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Abstract: Density functional theory is a powerful and
efficient method for calculating potential energy surfaces
for chemical reactions, but its application to complex
systems, such as reactions in enzymes, is often prohibi-
tively expensive, even when high-level theory is applied
only to a primary subsystem, such as an active site, and
when the remaining system is treated by molecular
mechanics. Here we show how the combination of multi-
configuration molecular mechanics with charge response
kernels can speed up such calculations by three or more
orders of magnitude. The resulting method, called elec-
trostatically embedded multiconfiguration molecular me-
chanics, is illustrated by calculating the free energy of
activation profile for the dehalogenation of 1,2-dichloroet-
hane by haloalkane dehalogenase. This shows how hybrid
density functionals or other high-level electronic structure
methods can now be used efficiently in simulations that
require extensive sampling, such as for calculating free
energy profiles along a high-barrier reaction coordinate.

“The accuracy of a simulation is largely determined by two
factors: conformation sampling and model accuracy.”1 The
Car-Parrinello scheme2 created a paradigm shift in molecular
dynamics simulations by suggesting an efficient way to replace
empirical interatomic potential models (molecular mechanics)
with density functional direct dynamics, where direct dynamics
implies that “instead of using a pre-defined PEF (potential
energy function), all required energies and forces for each
geometry that is important for evaluating dynamical properties
are obtained directly from electronic structure calculations.”3

Now density functional direct dynamics, using either the
Car-Parrinello algorithm or later-generation ones, is a standard

tool in materials science,4,5 especially with density functionals
that do not involve nonlocal operators because local functionals
allow for less expensive plane wave calculations on extended
systems. In some cases, density functional theory (DFT) is
replaced by another quantum mechanical (QM) method, or QM
is applied to an active site subsystem and combined with
molecular mechanics (MM) for a much larger secondary
subsystem. For many problems, though, such as free energy
simulations of enzyme-catalyzed reactions, even combined QM/
MM calculations are very expensive because of the required
QM system size or the large amount of sampling required, and
there is considerable research on how to make the calculations
most affordable.6-15

The most accurate QM levels for chemistry require inclusion
of dynamical correlation and nonlocal Hartree-Fock exchange,
as in hybrid density functionals that represent a marriage of
Kohn-Sham and Hartree-Fock theories,16 but Hartree-Fock
exchange makes calculations on large or complex systems very
expensive. In the present article, we report well-converged free
energy simulation of an enzymatic reaction employing a hybrid
density function that includes 42.8% Hartree-Fock exchange.
This calculation is made efficient by applying the new electro-
statically embedded multiconfiguration molecular mechanics
(EE-MCMM) algorithm,17 which is actually a powerful but
semiautomatic fitting algorithm that is adapted to be efficient
in the combined QM/MM context.

Consider first the MCMM algorithm for a gas-phase
reaction18,19 with N atoms with coordinates RR ≡ (XR, YR, ZR),
R ) 1, 2, ..., N, and let R denote the set of RR. MCMM involves
approximating the PEF as the lowest eigenvalue V of a 2 × 2
valence bond configuration interaction matrix:20

H11 is set equal to the MM PEF of reactants, and the H22 is
set equal to the MM PEF of products.21 At a set of K geometries
called electronic structure Shepard points, R(k), with k ) 1, 2,
..., K, one uses electronic structure theory to calculate a Taylor
expansion of V valid through second order in Q(k) ≡ R - R(k).
One then re-expresses this as a second-order Taylor expansion
H12

(k) of H12(Q).22 A global approximation to H12 is then obtained
by joining these expansions (possibly augmented by KMM

additional points where H12
(k) is assumed to be zero) by Shepard

interpolation.18,19,23

In combined QM/MM treatments of chemical reactions, the
reactive QM subsystem interacts with a (usually much larger)
nonreactive subsystem described by MM.24,25 The interaction
of the subsystems is described by stretching, bending, torsion,
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noncovalent (repulsion and dispersion), and electrostatic terms.
The electrostatic terms are the only ones that affect the QM
wave function, and they correspond to including the partial
atomic charges of the MM subsystem in the Hamiltonian of
the electronic orbitals of the QM subsystem. As in the method
of charge response kernels,26-28 we replace these QM
orbital-MMpartialchargeinteractionsbyQMpartialcharge-MM
partial charge interactions. Then the electrostatic terms depend
on the MM system only through the N values ΦR of the
electrostatic potential of the MM subsystem at the nuclei of
the QM subsystem. Thus, the QM energy depends on 4N
variables: XR, YR, ZR, ΦR, R ) 1, 2, ..., N. By using 4N-
dimensional Taylor series (rather than the 3N-dimensional ones
used for gas-phase calculations) in the Shepard interpolation,
the MCMM method can treat the electrostatically embedded
(EE) QM subsystem of the combined QM/MM calculation very
efficiently; this is called EE-MCMM.17 The new kinds of
derivatives that appear in the Taylor series are ∂V/∂ΦR, which
is a partial charge QR on QM atom R, and ∂2V/∂ΦR∂Φ� and
∂2V/∂ΦR∂RR, which are charge response kernels that, respec-
tively, describe the QM charge fluctuations due to the MM
electrostatic potential and the displacements of the QM atoms.
The truncation of the Taylor series in φR ) ΦR - ΦR

(k) at second
order is adequate because the linear response relation between
QR and ΦR generally holds quite well even when φR is large,29

and because the trust regions around each R(k), Φ(k) point are
merged by Shepard interpolation.

As explained in previous papers,18,30,31 MCMM18 is based
on a combination of several elements: (i) semiempirical valence
bond theory for the potential energy surface V of a chemical
reaction,32 (ii) the combination of semiempirical valence bond
theory with MM for spectator degrees of freedom,31,33 (iii) the
empirical valence bond method in which MM force fields are
used for the diagonal elements of a valence bond Hamiltonian
matrix, and their parameters or parameters in off-diagonal
elements (H12 in the case of a two-configuration treatment, as
used here) can be adjusted to produce either potential energy
surfaces or features that agree with electronic structure calcula-
tions or features inferred from experiments,21,34 (iv) the reversion
of a Taylor series for V at a particular geometry to provide a
Taylor series for H12,

22 (v) the multidimensional Shepard
interpolation method,23 and (vi) the efficient and orientation-
independent representation of low-order expansions of potential
energy surfaces in internal coordinates.35 MCMM combines
these elements in a new way. For example, whereas the Shepard
interpolation was originally applied to interpolate V,23 it is used
in MCMM to interpolate H12, which is a key difference because
H12 is generally more slowly varying and less rugged. MCMM
also uses a new weighting function for the Shepard interpolation.
EE-MCMM17 extends MCMM to electronically embedded QM/
MM calculations24,25 by combining MCMM with charge
response kernels26-29 for electrostatic embedding. MCMM is
designed to provide a particularly efficient method for fitting
global potential energy surfaces of complex systems, and EE-
MCMM extends the approach to electronically embedded QM
subsystems in combined QM/MM calculations.

We emphasize that, although our method involves MM, its goal
is to fit a high-level potential energy surface for a specific
multidimensional reaction conveniently and efficiently, not to

generate a semiempirical approximation to a surface. Similarly,
although the method uses charge response kernels, it is not an
alternative to semiempirical fluctuating charge or electronegativity
equalization models, but rather it uses these kernels to efficiently
represent the response26-29 calculated for a particular system by a
high-level method. If the method is continued to convergence, then
the results become independent of the MM force field employed
and approach the results that would be obtained with the high-
level fitted. However, it is not necessary to converge the calculations
to that limit, and we accept a dependence on the assumed MM
force field in the reactant and product regions if MM is reasonably
accurate there, and we accept an MM dependence in the regions
of the surface that are less important for the particular dynamical
event under consideration, just as combined QM/MM calculations
accept MM for the degrees of freedom of the system that are less
strongly coupled to the reaction.

Here we demonstrate the applicability of EE-MCMM to
enzyme kinetics by applying it to the reaction RCH2C(O)O- +
CH2ClCH2Cl f RCH2C(O)OCH2CH2Cl + Cl-, where R is
haloalkane dehalogenase, and the carboxylate nucleophile
participating in the reaction is the side chain of Asp124.36

Because our objective in this letter is to provide a methodologi-
cal demonstration of capability and reduction to practice, we
do not review work whose objective is to understand the
particular enzyme reaction used for the example.

Results
Our simulation has 15 QM atoms (substrate plus CH2C(O)O-

of Asp124) and 5 812 MM atoms (the rest of the protein and
water), and we used the hybrid density functional MPW1K,37

where the fraction of Hartree-Fock exchange was optimized37

to reproduce barrier heights and reaction energies. As a result,
MPW1K includes 42.8% Hartree-Fock exchange, and the error
is much smaller than the errors of local density functionals.38

The reaction coordinate is defined in terms of the breaking
C-Cl bond distance r1 and the forming C-Cl bond distance r2

by

First, we performed constrained optimizations with z ) -0.9,
+0.2, and +1.8 Å. This yielded three sets (k ) 1, 2, 3) of R(k),
Φ(k) that were used for a preliminary EE-MCMM fit. A
minimum-energy path for this fit differed from a full MPW1K/
MM calculation by the greatest amount at z ) 0.9 Å, so that
point was chosen as the fourth Shepard point. Four more
Shepard points were then added at locations where preliminary
MCMM fits differed from full calculations. The final simulations
have K ) 8 and KMM ) 0.

Figure 1 shows three snapshots from the simulation. These
pictures show that two tryptophans make hydrogen bonds with
the substrate at the transition state.

We carried out umbrella sampling by the weighted histogram
analysis method39 (WHAM) with 33 equally spaced windows
centered at values z0 of the reaction coordinate from -1.2 to
+2.0 Å. The resulting potential of mean force (PMF) is shown
in Figure 2. The PMF is very smooth and physically reasonable.
The barrier in the PMF is 15.3 kcal/mol. Correcting for the
vibrational free energy along the reaction coordinate at the
reactant40 lowers this to 14.8 kcal/mol. Since z is nearly linear

z ) r1 - r2 (2)
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in Cartesian coordinates at the transition state, this may be
considered to be a good approximation to the free energy of
activation.40 For comparison, the experimental value is 15.3 kcal/
mol (obtained from the experimental rate constant41 using
transition-state theory).

During the umbrella sampling run, we saved a configuration
every 0.5 ps during the data collection phase for each window, for
a total of 3 300 configurations in the entire umbrella sampling
calculations. We then compared the EE-MCMM/MM energies at
these points to full QM/MM calculations; the error statistics are
given in Table 1. This table shows that the mean signed and
unsigned errors in the PEF are reasonably small all along the
reaction path.

Discussion
Combined QM/MM methods are a powerful means for studying
chemical reactions in solution, enzymes, and solids. Two central

difficulties are using a reliable level for the QM subsystem and
sampling configurations of the entire system adequately. It is
difficult to carry out direct high-level ab initio or density
functional calculations because both types of calculations require
a high computational cost. Here we have shown that the EE-
MCMM method has great promise for describing QM/MM
potential energy surfaces for free energy calculations in enzyme
kinetics with electronically embedded QM subsystems with
reliable accuracy and low computational cost.

Table 2 compares the computational cost for the calculations
presented here to the estimated computer time for straight direct
dynamics without EE-MCMM. The EE-MCMM algorithm
speeds up the calculation for a total simulation time of 3.3 ns
by an estimated factor of 950. The ratio would become even
more favorable if longer sampling times were required because
in EE-MCMM the extra cost above using analytic potential
energy surfaces is all up front. Therefore, EE-MCMM makes
QM/MM with hybrid density functionals affordable for large
and complex systems requiring extensive sampling, such as
high-barrier enzymatic reactions.

Although the errors in Table 1 are small, using more than
eight Hessians could reduce them further. We chose instead to
show how well we can do with a very small number of Hessians.
In most cases, there is a law of diminishing returns where the
precision of the fit is reduced below the level of intrinsic
accuracy of the underlying electronic structure method. A recent
study38 showed a mean unsigned error of 1.6 kcal/mol for
MPW1K with a comparable basis to that used here, where the
error was assessed with a representative database of SN2 barrier
heights (as compared to 8.7 kcal/mol for the popular11,15 local
functional BLYP with the largest basis set tested s larger than
the one used here), so the mean errors in Table 1 are already
less than the errors due to the inexactness of the underlying
density functional. The MM force fields were not optimized
for the present work, and the success of the method with
standard force fields is one of the attractive features of the
method. Nevertheless, although the errors are already acceptably
small, we expect that they could be further reduced, if desired,
by using optimized or specific reaction parameters in the MM.42

A potential speedup is to use analytic Hessians, which are
available in many computer codes. Here we used numerical
Hessians. We estimate that using analytic Hessians for
∂2V/∂RR∂R� would have decreased the cost for the Hessian step
from 96 to 55 CPU hours. Analytic Hessians for ∂2V/∂ΦR∂Φ�

and ∂2V/∂ΦR∂RR are also available,27 and using these would
further reduce the computational time. Further efficiency could
be also achieved by using partial electronic structure Hessians43

or by using the new non-Hermitian formulation of MCMM.44

Methods

As the starting geometry, we used the X-ray crystal structure
of the enzyme-substrate complex (Protein Data Bank code
2DHC).36 The basis set for the quantal calculations was
6-31(+)G(d,p).16 The MM force fields were modified MM3
(where the modifications were described previously16) for the
substrate, AMBER ff031 for the protein, and TIP3P45 for water.
Partial charges were obtained by Charge Model 4 (CM4)16,46

for the QM region and by RESP1,47 for the MM subsystem.

Figure 1. Hydrogen bonding in the active site. Snapshots of
the QM subsystem plus key nearby MM atoms at the reactant,
the transition state, and the product configurations.

Figure 2. Free energy profile. Free energy as a function of
reaction coordinate z.

Table 1. Errors (kcal/mol) during MD Simulations

z0 mean signed error mean unsigned error

-0.8 -0.3 1.1
-0.4 -0.3 0.6

0.0 -0.5 0.8
+0.4 -0.2 0.5
+0.8 0.5 0.8
+1.2 0.3 0.9
+1.6 0.7 0.9
alla 0.1 0.9

a 3 300 configurations from all windows with -1.2 e z0 e 2.0 Å.

Letter J. Chem. Theory Comput., Vol. 5, No. 11, 2009 2927



The interface between the QM and MM subsystems was treated
by the link atom method48 with the balanced49,50 RC51 scheme.

The umbrella sampling was carried out at T ) 300 K to
calculate the PMF. The equations of motion were integrated
by the velocity Verlet method with a time step of 0.5 fs. For
each umbrella sampling window, we began with a 50 ps MD
trajectory calculation for equilibration, followed by 50 ps
calculation for statistical sampling. The negative contribution
of the reaction-coordinate motion of the reactant to the free
energy of activation40,52 was included by subtracting the
vibrational free energy along the reaction coordinate at the
reactant:

from the PMF where kB, T, and p are the Boltzmann constant,
temperature, and Planck’s constant divided by 2π. The effective
vibrational frequency ωR, z of the reaction coordinate at the
reactant was calculated from a force constant obtained from the
PMF around the reactant and an averaged reduced mass
calculated in the reactant window using eq 38 in ref 40.

In applying MCMM or EE-MCMM, the quadratic Taylor
series are expressed in internal coordinates for the interpolation
step. For a shallow potential along a torsion coordinate, Θm

(where m is a label distinguishing the various torsions), the
second-order truncation is sometimes problematic. Therefore
we replace θm ) Θm - Θm

(k) by sin(nΘm
(Θm - Θm

(k)))/nΘm
, where

nΘm
is 1 for an X-C-O-Y torsion and 3 for an X-C-C-Y

torsion. Furthermore, we set some of the quadratic coefficients
involving torsions equal to zero.

The electronic structure calculations were carried out by
GAMESSPLUS53,54 in which we implemented the QM/MM
optimization program. The dynamics calculations were carried
outbyalocallymodifiedversionofAMBER55withMC-TINKER.56,57

The WHAM calculations were carried out with a program
written by Grossfield.58
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Y.; Villà, J.; Xing, J.; Lin, H.; Truhlar, D. G. MC-TINKER,
Version 2008-2; University of Minnesota: Minneapolis, MN,
2008.

(57) Ponder, J. W. TINKER, Version 3.5; Washington University:
St. Louis, MO, 1997.

(58) Grossfield, A. WHAM, Version 2.0.2; University of Rochester:
Rochester, NY, 2008.

CT900301D

Letter J. Chem. Theory Comput., Vol. 5, No. 11, 2009 2929



Dispersion Corrected Atom-Centered
Potentials for Phosphorus

Michele Cascella,† I-Chun Lin,‡ Ivano Tavernelli,§ and
Ursula Rothlisberger*,§

Departement für Chemie und Biochemie, UniVersität Bern,
Freiestrasse 3, CH-3012 Bern, Switzerland, Department of
Chemistry, New York UniVersity, 100 Washington Square
East, Room 1001, New York, New York 10003-6688, and
Laboratory of Computational Chemistry and Biochemistry,
Institute of Chemical Sciences and Engineering, BCH 4109
Ecole Polytechnique Fédérale de Lausanne EPFL,
CH-1015 Lausanne, Switzerland

Received July 20, 2009

Abstract: Dispersion-corrected atom-centered potentials
(DCACPs) for the element phosphorus were generated
and tested for the BLYP, BP, and PBE generalized
gradient approximations of the exchange-correlation func-
tional. The accuracy and transferability of the DCACPs
were tested by evaluating the interaction energy of different
weakly bound molecular systems (P2, PH3, and PN
dimers). These results were compared to reference
CCSD(T) calculations and standard density functional
theory (DFT). The DCACP were also tested in the case of
condensed phase systems. Specifically, the density and
cohesive energies of �-white and black phosphorus were
estimated and compared to available experimental data.
Our results show an overall strong improvement both at
the qualitative and quantitative level, with respect to
uncorrected generalized gradient approximation DFT re-
sults for all three functionals. In particular, BLYP-corrected
results show the maximal transferability, reporting for all
systems a deviation from CCSD(T) results of less than 1%
in the predicted binding energies.

Dispersion forces are a crucial type of interaction that
influence many chemical and physical phenomena. At the
same time, these forces are very difficult to capture by first

principles calculations, due to the fact that they originate from
dynamical correlation of the electronic degrees of freedom.
In particular, density functional theory (DFT) with standard
approximations of the exchange-correlation (xc) functional
is quite weak in describing dispersion interactions.1-4

Recently, different possible corrections to DFT that include
dispersion interactions have been proposed. Different schemes
presented in the literature make use of electron density
partitioning,5 solution of the adiabatic connection formula
for the long-range part of the interaction energy,6 symmetry
adapted perturbation theory,7,8 sophisticated approximation
of the xc-potential,9,10 or add an explicit “dispersion interac-
tion” term with a C6 coefficient either determined empiri-
cally3,11,12 or generated by the instantaneous dipole moment
of the exchange hole.13-15 Very good results have also been
achieved by Truhlar and co-workers with hybrid meta-
generalized gradient approximations (GGA) of the xc
functional.4,16,17 It has been shown that dispersion interactions
can also be empirically included as correction to the total
Kohn-Sham potential, expressed in the form of a multicenter
density functional.18-23 In our scheme, the atom-centered
corrections are determined via a penalty function that
minimizes the DFT data with respect to a reference calcula-
tion at high-level (typically, CCSD(T)). These dispersion-
corrected atom-centered potentials (DCACP) have been
shown to be highly transferable and to provide good results
in reproducing binding energies in different systems, like inert
gases,24 aliphatic and aromatic hydrocarbons,25 stacked base
pairs,26 and hydrogen-bonded complexes.27,28 DCACPs have
been developed for local forms of the approximate xc
functionals (typically, GGAs), which ensure the broadest
applicability in both Gaussian and plain-wave based codes.
Currently, DCACPs are available for inert gases and for
hydrogen, carbon, oxygen, nitrogen, and sulfur elements.24,29

In this letter, we present the results for phosphorus, thus,
completing the library of the main elementary constituents
of biological matter.

The theory and methodology to develop DCACPs have been
widely discussed elsewhere.18,24 Briefly, the electronic problem
is solved in the presence of an atom-centered correction
potential:

where H0 is the standard Kohn-Sham Hamiltonian, and Vik is
the correction potential, centered on each atom i, specific for
each element k. Each Vik has the form of a Gaussian and is
tuned through a penalty function to reproduce dispersion
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dominated reference interaction energies, calculated for a simple
system by a high-level methodology (CCSD(T)). DCACPs are,
by design, effective corrections to a given approximate form
of the xc functional.30 Therefore, different DCACPs have to be
generated and used for calculations using different xc functionals.

In our case, reference dispersion interactions in phosphorus
were evaluated for the (P2)2 system. First, we optimized the
geometry of the P2 molecule at MP2/aug-cc-pVTZ level, finding
a P-P distance of 1.927 Å. Then, we calculated the interaction
energy for the (P2)2 moiety as a function of the distance of the
two relative centers of mass, constraining the two P2 molecules
in a parallel D2h conformation (Figure 1). The electronic problem
was solved at the CCSD(T)/aug-cc-pVTZ level of theory, taking
into account standard counterpoise corrections. Geometry
optimization and interaction energy calculations were performed
using the GAUSSIAN03 package.31 DFT calculations were
performed using the CPMD code,32 simulating the system in
an isolated box of 23 × 15 × 15 Å3, using plane-waves with a
cutoff of 200 Ry as basis functions and employing the
pseudopotential of Goedecker et al.33 Details on the calibration
procedure can be found in refs 18 and 24. The parameter sets
for the obtained DCACPs can be downloaded at http://
lcbcpc21.epfl.ch (see also Supporting Information).

The interaction energy plot obtained by CCSD(T) calculations
shows a minimum energy of about 2.65 kJ mol-1 for an
intermolecular distance of 4.6 Å (Figure 1). As expected, DFT
based on GGAs of the xc functional poorly describe this
interaction. In particular, Becke-Lee-Yang-Parr (BLYP)34,35

or Becke Perdew (BP)36 xc functionals show a completely
repulsive profile.

Perdew-Burke-Ernzerhof (PBE)37 GGA results in a very
shallow minimum at an intermolecular distance of about 5 Å.
On the other hand, including DCACPs leads to good agreement
of the DFT energy plots with the CCSD(T) reference curve for
all three xc functionals taken under consideration (Figure 1).
The largest deviations are found for the results with the corrected
BLYP functional, which show an equilibrium distance of about
4.75 Å, approximately 0.15 Å longer than the CCSD(T) result.
The faster decay of the long-range tail in the DCACP plots is
related to the fact that DCACPs are represented with a single

(nonlocal) angular momentum channel (f) that leads to minimal
errors in the energy of the minimum, but it is not sufficient to
completely ensure a formally correct long-range behavior.30 The
use of a single channel constitutes the best compromise between
accuracy and computational cost for the DCACP method.

The transferability of the newly obtained DCACPs was tested
on a set of systems where dispersion interactions contribute
substantially to the energetics. The first system we used is the
phosphine dimer (PH3)2. The geometry of a single phosphine
molecule was first optimized at the MP2/aug-cc-pVTZ level.
Then, two phosphine molecules were oriented at a relative angle
θ ) 90° (where θ is the angle between the two principal
symmetry axes of the PH3 molecules, see Figure 2) to nullify
the dipolar interactions. In this case, as in all heterogeneous
compounds, DCACPs calculations were performed using
DCACP-corrected potentials for both phosphorus and hydrogen
elements. Additivity, transferability, and comparability of
DCACPs for heterogeneous systems have been broadly dis-
cussed and successfully tested in previous papers24-30 (see also
Supporting Information). The binding energy as a function of
the phosphorus-phosphorus distance was then evaluated. Figure
2 (top panel) reports the results obtained for GGA and DCACP
calculations. DCACPs substantially improve the DFT/GGA
results, leading, in the case of BLYP and PBE, to binding
energies and equilibrium distances equal to those obtained by
CCSD(T) calculations. The BP corrected functional, on the
contrary, shows a slightly softer curve.

The bottom panel of Figure 2 shows the interaction potential
of the two phosphines at a P-P distance of 5.5 Å when rotating
the angle θ. Also in this case, the overall quantitative agreement
of the DCACP results, with respect to the CCSD(T) reference,
is very good. In particular, the location of the minimum at ∼115°
and the relative energies of the local and global maxima at 180°
and 0°, respectively, are all features that are quantitatively not
well reproduced at the uncorrected DFT level. The DCACPs
for phosphorus account for more than 95% of the correction to
the binding energy.

A second test for the transferability of P-DCACPs was
performed on the unusual PN molecule. Due to the peculiar
electronic nature of this molecule, this system can be considered
as a challenging test for the transferability properties of

Figure 1. Calibration of DCACP for the phosphorus element
based on P2 dimer interactions. Results for BLYP, BP, and
PBE xc functionals are shown with respect to the CCSD(T)
reference plot.

Figure 2. Top panel: interaction potential of two phosphine
molecules as a function of the P-P distance. Bottom panel:
interaction potential at fixed distance (d ) 5.5 Å) as a function
of the relative orientation.
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DCACPs. Figure 3 reports the results for this system in C2h

symmetry (molecules oriented perpendicular to the axis passing
through their respective geometrical centers). In this case, the
xc functionals based on the Becke exchange report a shallow
minimum at about 3.8 (BP) and 4.0 Å (BLYP). This points to
the fact that the (PN)2 moiety is not bound by pure dispersion
forces, but there is an additional stronger interaction present
between the two PN molecules (e.g., attractive dipole-dipole
interactions due to bond polarity).

However, also in this case both BP and BLYP underestimate
the binding energy, with respect to CCSD(T) results (4.47 kJ
mol-1 instead of 9.71 kJ mol-1). CCSD(T) calculations also
predict a shorter equilibrium binding distance of 3.64 Å.

Dispersion-corrected BLYP and BP are again able to well
reproduce the CCSD(T) data. PBE GGA is already fairly close
to the CCSD(T) results, providing a binding energy of 7.88 kJ
mol-1 and a bond length of 3.72 Å. In this case, the DCACP
correction to PBE xc improves the binding distance to match
the CCSD(T) result but leads to an overestimation of the (PN)2

binding energy (∼15 kJ mol-1). DCACP data were obtained
combining the corrected potential for P with the one of N.24

Also in this case, the use of DCACPs on P only accounts for
most of the binding energy correction. In Table 1, binding
energies and distances of the three molecular systems are
compared with the corresponding data obtained with the
M06-2X xc functional.4 DCACP binding energies are closer
to the CCSD(T) data than those predicted by M06-2X, while
DCACPs and M06-2X perform comparably in predicting
binding distances with respect to the CCSD(T) reference
calculations.

A final transferability test was done by estimating the density
of crystalline �-white phosphorus. Its primitive cell contains

six P4 molecules, placed in symmetric pairs with respect to the
center of the unit cell (Figure 4a, left panel).38 This allotropic
form of phosphorus is formally a molecular crystal, and
therefore, the cohesive forces are expected to have strong
dispersion contributions. However, the minimal distance among
P atoms of different P4 units can be as short as 3.1 Å, well
below the typical van der Waals (vdW) distance of phosphorus;
therefore, covalent terms also contribute to the cohesive energy.

In our calculations, we performed isotropic variations of the
periodic cell. This means that the angles R, �, γ, and the relative
ratio between the edges of the cell (a, b, c) were left unchanged
with respect to the experimental values. Figure 4 reports the
cohesive energy per P4 molecule (calculated as: Ec ) E(crystal)/6
- E(P4)(in vacuo)), as a function of the density of the crystal.
Standard BLYP calculations predict the crystal to be only
marginally stable at densities that are too low, with respect to

Figure 3. Interaction potential of two PN molecules placed
in planar C2h configuration (molecules perpendicular to d axis).

Table 1. Binding Energies and Equilibrium Distances for P2, PH3, and PN dimers from Both Uncorrected and
DCACP-Corrected DFT/GGA Resultsa

molecule BP PBE BLYP DCACP BP DCACP PBE DCACP BLYP M06-X2 CCSD(T)

(P2)2

binding energyb >0 -0.56 >0 -2.65 -2.65 -2.65 -1.83 -2.65
equilibrium distancec - 5.00 - 4.60 4.60 4.75 4.50 4.60
(PH3)2

binding energyb >0 -1.64 >0 -3.19 -3.16 -3.17 -3.51 -3.17
equilibrium distancec - 4.20 - 3.85 4.0 4.0 3.9 4.0
(PN)2

binding energyb -4.47 -7.88 -4.47 -9.94 -14.81 -9.70 -14.01 -9.71
equilibrium distancec 3.85 3.70 4.0 3.68 3.63 3.74 3.50 3.64

a The table presents a direct comparison with other xc approximation (M06-2X)4 and high-level CCSD(T) results. b Binding energies
(kJ mol-1). c Equilibrium distances (Å).

Figure 4. (a) Left panel: primitive cell of �-white phosphorus.
Right panel: cohesive energy as a function of its density for
different GGA and DCACP-corrected functionals. (b) Left
panel: primitive cell of black phosphorus. Right panel: cohe-
sive energy as a function of the P-P interplane distance
(black arrow, left panel). The dashed lines in the two graphs
indicate the corresponding experimental values.
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the experimental one (1.92 g/cm3).38 In fact, the BLYP xc
predicts a density of ∼1.82 g/cm3, which is, incidentally, the
experimental density of the more expanded R-white phosphorus.
On the contrary, BLYP-DCACP is again in excellent agreement
with experiment, predicting a density of 1.92 g/cm3, identical
to the experimental value. Both uncorrected BP and PBE
functionals overbind the P4 molecules, predicting a density of
more than 2.0 g/cm3. Addition of the DCACP correction does
not lead to an improvement of the results but only yields a
constant energy shift. In fact, DCACPs cannot correct intrinsic
DFT errors to binding energies for systems where the uncor-
rected xc functionals produce spurious covalent features. In order
to confirm the differences in the intrinsic performance of the
different xc functionals for covalent interactions, we have
performed a final test on the structure of black phosphorus, a
more compact allotropic form, where atoms bind covalently in
layers displayed parallel to the x-y-plane, which then pack along
the z-direction (Figure 4b). We have progressively varied the
distance among layers (that is, varying the length of the edge
along z of the periodic cell), forcing the single layer to remain
in the same geometry along the x-y-directions and calculating
the cohesive energy for every step. In this case, both BLYP
and PBE functionals predict a repulsive behavior in the vdW
distance region. DCACP-corrected functionals report the same
energetics in the vdW region, with a minimum at around 3.8 Å
(Figure 4b). At closer distances, on the contrary, the PBE
functional predicts a maximum around a distance of 3.2 Å,
followed by a reactive profile, which leads to covalent binding
of the layers. As in the previous case, the behavior at covalent
distances cannot be corrected by DCACP.

In summary, we present DCACPs for the phosphorus element
in combination with BLYP, BP, and PBE xc functionals. Our
benchmark calculations show that these potentials have a good
transferability in systems dominated by dispersion interactions,
as previously found for rare gases and second-row elements,
already discussed in the literature. Tests performed on the
unusual molecule PN, as well as on different allotropic forms
of solid P, show that DCACP correction for BLYP keeps its
good transferability in systems where the binding energy has
dispersion and covalent components, while results from cor-
rections to PBE may not be as accurate in such cases. Overall,
the DCACP correction coupled to the BLYP functional performs
best, as already reported for other elements (see refs 24-29).
This work completes the DCACP library for “biological”
elements, after the DCACP development for H, C, N, O,24 and
S29 and, therefore, is of particular interest for studies of
biochemical events involving phosphorus chemistry. Due to the
sizable dispersion contributions of the phosphorus atoms, the
DCACPs presented here are expected to be crucial for studies
of nucleic acids, protein cofactors (FMN, FAD, NAD, etc...),
enzyme-phosphorylated substrate complexes (e.g., in active sites
of kinases), or in studies of protein transition-state analogue-
based inhibitors.39
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Abstract: We are presenting POSSIM (POlarizable Simulations with Second-order Interaction
Model)sa software package and a set of parameters designed for molecular simulations. The
key feature of POSSIM is that the electrostatic polarization is taken into account using a previously
introduced fast formalism. This permits cutting the computational cost of using the explicit
polarization by about an order of magnitude. In this article, parameters for water, methane,
ethane, propane, butane, methanol, and N-methylacetamide (NMA) are introduced. These
molecules are viewed as model systems for protein simulations. We have achieved our goal of
ca. 0.5 kcal/mol accuracy for gas-phase dimerization energies and no more than 2% deviations
in liquid state heats of vaporization and densities. Moreover, free energies of hydration of the
polarizable methane, ethane, and methanol have been calculated using the statistical perturbation
theory. These calculations serve as a model for calculating protein pKa shifts and ligand binding
affinities. The free energies of hydration were found to be 2.12, 1.80, and -4.95 kcal/mol for
methane, ethane, and methanol, respectively. The experimentally determined literature values
are 1.91, 1.83, and -5.11 kcal/mol. The POSSIM average error in these absolute free energies
of hydration is only about 0.13 kcal/mol. Use of the statistical perturbation theory with polarizable
force fields is not widespread, and we believe that this work opens the road to further
development of the POSSIM force field and its applications for obtaining accurate energies in
protein-related computer modeling.

I. Introduction

Computer simulations have become an integral part of
chemical and biochemical research, delivering answers to a
variety of questions ranging from assessing reaction kinetic
data to providing microscopic insight into systems involving
proteins and DNA. The key issue in any such modeling is
the way the energy of the system is evaluated. Quantum
mechanics provides a robust tool for this task, but there are
two general problems. First, quantum mechanical calculations

are resource-demanding; therefore, the size of a system which
can be treated this way is limited. Second, there is no one
single recipe for obtaining uniformly accurate quantum
mechanical data, and the level of theory required for different
problems varies.

Empirical force fields offer an alternative which is much
cheaper computationally. However, it has been shown that,
in many cases, accurate assessment of energy with empirical
force fields necessitates explicit treatment of many-body
interactions, mainly the electrostatic polarization.1 Dimer-
ization energies and acidity constants of small molecules,
energies of protein-ligand interactions, protein pKa values,
or even the very thermodynamic stability of complexes in

* Corresponding author e-mail: gkaminski@wpi.edu.
† Worcester Polytechnic Institute.
‡ Central Michigan University.
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solutions often depend on including the electrostatic polar-
ization into the empirical Hamiltonian. For example, it has
been demonstrated in earlier works that pKa values for acidic
and basic residues of the OMTKY3 can be reproduced within
0.6 and 0.7 pH units of the experimental data if explicit
treatment of polarization is included. The errors with the
nonpolarizable OPLS are 3.3 pH units for the acidic residues
and 2.2 for the basic ones.2 Another interesting example was
a study of Sialyl LewisX in complex with SelectinE. This
sugar-protein complex is known to exist experimentally but
dissociated in molecular dynamics simulations with fixed
charges.3 Overall, many-body interactions play a crucial role
in many applications, although they are sometimes included
in surrogate forms, for example, as conformation-specific
protein charges.4

There are two major issues pertaining to polarizable
calculations which are still not uniformly resolved. On one
hand, the optimal source of fitting data seems to vary from
application to application. While it is attractive to rely almost
solely on high-level quantum mechanical results,5 experi-
mental data often present more robustness. Moreover, while
quantum mechanical calculations permit a great level of
microscopic insight, the very values of quantum mechanical
energies are often uncertain, as they may significantly change
depending on the level of theory. We adopt a middle-path
approach in this work, in which we rely on experimental
data whenever possible and make heavy use of quantum
mechanical calculations, while trying not to treat them as
panacea.

The second issue with polarizable force fields is the
functional form of polarization itself. There are several viable
techniques present, including fluctuating charges or inducible
point dipoles. It is possible to implement these quite
efficiently for uniform systems known in advance (such as
pure water6). But software for simulating arbitrary polarizable
systems (including proteins and protein-ligand complexes)
is usually significantly slower than its fixed-charges coun-
terparts. Calculating induced dipoles or fluctuating charges
requires solving a system of self-consistent equations. This
is usually done iteratively, and the process may lead to
unlimited growth of the induced dipoles (the so-called
polarization catastrophe). In order to reduce the computa-
tional cost of polarizable calculations, we introduced an
approximation that we termed second-order polarization. It
permitted a reduction of the time needed for assessing the
polarization energy by about an order of magnitude, removed
any possibility of polarization catastrophe, and was done
without any sacrifice of the computational accuracy.7

This article reports the next stage of the systematic
development of the second-order polarization technique. A
software suite called POSSIM (POlarizable Simulations with
Second-order Interaction Model) has been created for the
second-order polarizable calculations. Parameters for several
model systems have been developed. The list of these
systems includes N-methylacetamide (NMA), which will be
further used as the main building block in protein backbones.
Moreover, free energy perturbations were performed with
the POSSIM force field and software to obtain relative and
absolute Gibbs free energies of hydration for methane,

ethane, and methanol. While being widely used with fixed-
charges force fields, such calculations are still rather rare
with polarizable techniques. The toolset presented in this
paper will be further utilized in developing POSSIM
parameters for proteins and other systems and studying
biophysical and organic processes, including protein-ligand
binding.

In this work, we benchmark the POSSIM results (marked
PFF, for Polarizable Force Field) against the fixed-charges
OPLS-AA8 as well as the previous version of the polarizable
force field (non-second-order, thus a slower one) termed
PFF0.9

The rest of the paper is organized as follows: Given in
section II is a description of the methodology involved.
Section III contains results and discussion. Finally, conclu-
sions are presented in section IV.

II. Methods

A. Force Field. The total energy Etot is calculated as
follows:

Eelectrostatic stands for the electrostatic interactions, including
the dipole-dipole, dipole-charge, and charge-charge con-
tributions. EvdW is the nonelectrostatic part of the nonbonded
inter- and intramolecular energy; Estretch and Ebend are the
harmonic bond stretching and angle bending, respectively.
Finally, Etorsion is the Fourier expansion for the torsional
energy.

Electrostatic Energy. The electrostatic polarization energy
with inducible point dipoles is

E0 denotes the electrostatic field in the absence of the dipoles,
and µ represents the induced dipole moments, which are
calculated as follows:

where R represents scalar polarizabilities and Ei
tot is the total

field, including the dipole-dipole component:

with Rij being the distances between atomic sites i and j. I is
the unit tensor. Then,

or

Etot ) Eelectrostatic + EvdW + Estretch + Ebend + Etorsion

(1)

Epol ) -1
2 ∑

i

µiEi
0 (2)

µi ) RiEi
tot (3)

Ei
tot ) Ei

0 + ∑
j*i

Tijµj (4)

Tij )
1

Rij
3(3RijRij

Rij
2

- I) (5)

µi ) RiEi
0 + Ri ∑

j*i

Tijµj (6a)

Aµ ) E0 (6b)
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The self-consistent eq 6 is usually solved iteratively. If
we explicitly write down the first three iterations, we can
produce “first-order”, “second-order”, and “third-order”
approximations for the induced dipoles:

The first-order expression requires considerably less
resources than the exact expression in eq 6, as the matrix A
does not come into play, but dipole-dipole interactions are
totally ignored. It has been shown that, although more
accurate than the fixed-charges description, this technique
is not accurate enough in describing molecular systems.10

We are utilizing the second-order expression in eq 7b instead.
It has been previously shown to yield about an order of
magnitude increase of the computational speed with no loss
of accuracy.7

The overall electrostatic energy

where

represents the pairwise-additive Coulomb charge-charge
interaction energies between charges on atoms i and j. The
term fij equals zero for 1,2 and 1,3 pairs (atoms which belong
to the same valence bond or angle), 0.5 for 1,4 interactions
(atoms in the same dihedral angle), and 1.0 for all of the
other pairs.

To avoid a nonphysical increase of the electrostatic
interactions at close distances, each atom is assigned a cutoff
parameter, Rcut. When the overall distance Rij is smaller than
the sum of these parameters Rmin

ij ) Rcut
i + Rcut

j for the atoms
i and j, Rij is replaced by an effective smooth function

The Rest of the Force Field. The van der Waals energy is
evaluated with the standard Lennard-Jones formalism:

Geometric combining rules are used:

and the coefficient fij is calculated the same way as for the
electrostatic term.

The bond-stretching and angle-bending energies were
obtained in accordance with eqs 13 and 14.

Here, the subscripts eq are used to denote the equilibrium
values of the bond length r and angle Θ.

Finally, the torsional term was computed as follows:

with the summation performed over all of the dihedral angles
i.

When a comparison is done with results obtained with the
nonpolarizable OPLS-AA force field,8 the latter lacks the
first (polarizable) term in the electrostatic energy expression
in eq 8. The previous generation polarizable force field9

(denoted as PFF0) employs the full iterative solvation of eq
6, has permanent dipole moments in addition to the inducible
ones, and uses the exp-6 van der Waals energy term instead
of the Lennard-Jones 12-6 formalism of this work.

B. Parameterization of the Force Field. The procedure
for determining values of the potential energy parameters
consisted of the following stages: (i) fitting the electrostatic
polarizabilities, (ii) fitting the permanent electrostatic charges,
(iii) determining Lennard-Jones parameters, (iv) obtaining
values of the torsional parameters, and (v) fine-tuning of the
force field. All of the calculations for the newly developed
PFF (both for the parametrization and free energy perturba-
tions) were performed with the POSSIM software suite.

Electrostatic Polarizabilities. A series of electrostatic
perturbations was applied to the target molecules, in the form
of dipolar probes consisting of two opposite charges of
magnitude 0.78e, 0.58 Å apart (for a dipole moment of 2.17
Dssimilar to that of nonpolarizable models for liquid water
such as SPC/E11), placed at locations where hydrogen bonds
to the molecule were formed. The perturbations were the
same as used for the previous generation of the polarizable
force field (PFF0).5,12 For each perturbation, the change in
the electrostatic potential at a set of gridpoints outside the
van der Waals surface of the molecule, as well as the energy
of the perturbed system, was computed using density-
functional theory (DFT) with the B3LYP method13 and cc-
pVTZ(-f) basis set. All calculations were performed with the
Jaguar electronic structure code.14 The polarizablities Ri are
assumed to be isotropic and are chosen to minimize the
deviation of the three-body energy obtained with the PFF
and the DFT calculations. The three-body energies were
calculated in accordance with eq 16 and Figure 1.

µi
0 ) RiEi

0 (7a)

µi
I ) RiEi

0 + Ri ∑
j*i

Tijµj
0)RiEi

0 + Ri ∑
j*i

TijRjEj
0 (7b)

µi
II ) RiEi

0 + Ri ∑
j*i

Tijµj
I)RiEi

0 + Ri ∑
j*i

TijRjEj
0 +

Ri ∑
j*i

TijRj ∑
k*j

TjkRkEk
0 (7c)

Eelectrostatic ) Epol + Eadditive (8)

Eadditive ) ∑
i*j

qiqj

Rij
fij (9)

Rij
eff ) [1 - ( Rij

Rmin
ij )2

+ ( Rij

Rmin
ij )3] × Rmin

ij (10)

EvdW ) ∑
i*j

4εij[(σij

Rij
)12

- (σij

Rij
)6]fij (11)

εij ) (εi · εj)
1/2, σij ) (σi · σj)

1/2 (12)

Estretch ) ∑
bonds

Kr(r - req)
2 (13)

Ebend ) ∑
angles

KΘ(Θ - Θeq)
2 (14)

Etorsion ) ∑
i

V1
i

2
[1 + cos(φi)] +

V2
i

2
[1 - cos(2φi)] +

V3
i

2
[1 + cos(3φi)] (15)

E3body ) E(1 + 2 + 3) - E(1 + 2) - E(1 + 3) -
E(2 + 3) + E(1) + E(2) + E(3) (16)
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Here, the molecule for which parameters are produced is
denoted as 1, and the two dipolar probes are marked as 2
and 3. This three-body energy is automatically equal to zero
in a nonpolarized fixed-charges force field, in which no
many-body interactions are explicitly present. It has been
shown that the three-body energy is independent of the
permanent charges and depends only on the values of the
polarizabilities.7 Therefore, it is justified that the polariz-
abilities in our force field were parametrized first.

The choice of electronic structure method (DFT/B3LYP
functional, cc-pVTZ(-f) basis set) yields quite accurate
permanent charge distributions but underestimates the gas-
phase polarizability as compared to experimental results.
Closer agreement with gas-phase experiments could be
obtained by including diffuse functions in the DFT calcula-
tions. However, our previous computational experiments with
liquid-state simulations strongly suggest that these diffuse
function contributions are considerably damped in the
condensed phase, and that ignoring them is in fact a much
better approximation than fully including them.5 Briefly, in
the condensed phase, Pauli repulsion from neighboring
molecules raises the energies of diffuse functions and so
diminishes their contribution to the polarization. Empirically,
when diffuse functions are used to develop polarization
responses for small molecules, liquid-state simulations of
these molecules manifest overpolarization of the solvent.

Permanent Electrostatic Charges. We have used the same
quantum mechanical systems as above, except that two-body
energies were employed as the fitting target:

The polarizabilities were not changed from their values
obtained at the previous step. The charges were adjusted to
minimize the two-body rms deviations.

In all of the cases (except for the dipolar probes), the Rcut

for both dipoles and charges on the molecule involved were
set to 0.8 Å.

Lennard-Jones Parameters. Fitting the Lennard-Jones part
of the force field was done with high-accuracy ab initio

results for intermolecular hydrogen-bonding interaction ener-
gies and distances as a target. Gas-phase energy minimiza-
tions were carried out. The quantum mechanical data were
obtained as described in ref 15, and many actual target
energies were adopted from the refs 9 and 12 (as noted in
the tables in the Results and Discussion section). The
methods employed to calculate binding energies are based
on an MP2 extrapolation procedure that was previously
developed using the pseudospectral local MP2 (LMP2)
approach.

The goal was to reproduce the gas-phase intermolecular
binding affinities and geometries as accurately as possible.
We normally set a target of 0.25-0.5 kcal/mol or better for
the precision of the binding affinity. For hydrogen bonds,
this can be achieved via MP2 calculations extrapolated to
the basis set limit, where the contribution of higher-level
excitations (e.g., CCSD(T)) has been shown to be negligible
(although, in some cases, such as π stacking of aromatic
rings, the MP2 level is not adequate to achieve the target
accuracy).

Briefly, dimer geometries were obtained by LMP2 opti-
mizations with a cc-pVTZ(-f) basis set.16 The empirical
dimer binding energy consists of the LMP2 binding energy
for a smaller cc-pVTZ(-f) basis set (Eccpvtz) and the LMP2
binding energy with a larger cc-pVQZ(-g) basis set (Eccpvq).
The model binding energy Ebind takes the simple form15

In calculating binding energies, the Hartree-Fock energies
are corrected for basis set superposition error using the
counterpoise method.

The target hydrogen-bonded distances were taken directly
from the LMP2/cc-pVTZ(-f) energy minimizations.

Bond Stretching and Angle Bending. The bond-stretching
and angle-bending energies were obtained according to eqs
13 and 14. The values of the parameters were taken directly
from the OPLS-AA.8 The reason is that both OPLS-AA and
our PFF disregard 1,2 (covalent bond) and 1,3 (covalent
angle) interactions; therefore, the energetics related to these
arrangements are the same with both techniques.

Torsional Parameters. Finally, the torsional term was
computed as shown in eq 15. We performed constrained
geometry optimizations with dihedral angles fixed at their
key positions and optimized the parameters V to minimize
deviations of the relative energies from the LMP2/cc-pVTZ(-
f) quantum mechanical results. For instance, for the ethane
molecule, constraining the H-C-C-H dihedral to 60° and
to 0° yielded relative quantum mechanical energies of 0 and
2.7762 kcal/mol, respectively. We have optimized the V3 term
of this torsion to achieve a close agreement with these
numbers (0 and 2.7751 kcal/mol). The V1 and V2 terms in
this case were set to zero.

Liquid Simulations. The final tuning of the force field
parameters was achieved by reproducing experimental values
of heats of vaporization and molecular volumes of the pure

Figure 1. Calculating two- and three-body energies of a
molecule with dipolar probes.

E2body ) E(1 + 2) - E(1) - E(2) (17)

Ebind ) C1·Eccpvtz + C2·Eccpvqz (18a)

C1 ) a1/(a1 - a2);C2 ) - a2/(a1 - a2) (18b)

a1 ) exp(-2.7);a2 ) exp(-1.8) (18c)
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molecular liquids involved. Each simulation was run with
the POSSIM software and included 216 molecules in a cubic
cell with periodic boundary conditions. The NPT ensemble
(constant temperature, pressure, and the number of mol-
ecules) was employed. Methanol and water were simulated
at 25 °C. The NMA liquid had a temperature of 100 °C.
The hydrocarbons were modeled at their boiling tempera-
tures: -161.49 °C for methane, -88.63 °C for ethane, -42.1
°C for propane, and -0.5 °C for butane. The calculations
were carried out with the Monte Carlo technique, and the
heats of vaporization were calculated according to eq 19:

The difference between the energy for one molecule in
the gas-phase and in the condensed state was augmented by
the RT term to account for the ∆(PV) part of the enthalpy,
in the assumption that the vapor obeys the ideal gas law,
and the molecular volume of the liquid can be neglected
compared to that of the gas. In all of the calculations, at
least 1 × 106 Monte Carlo configurations of averaging were
followed by no less than 5 × 106 configurations of averaging
for the thermodynamic properties. Elements of the dipole-
dipole interaction tensor in eq 5 were set to zero for distances
beyond 7.0 Å. The other intermolecular interactions were
cut off at 8.0 Å for water; 10.0 Å for methane and methanol;
and 11.0 Å for ethane, propane, butane, and NMA. The
charge-charge interactions were switched off smoothly over
the last 0.5 Å. The standard correction for the neglected
Lennard-Jones energies beyond the cutoff distances was
applied.

C. Calculating Relative and Absolute Free Energies
of Hydration. Calculating the free energies of hydration was
not in any way a part of the parameter fitting procedure, but
rather a test of the parameters produced as discussed above.
Therefore, we believe that the high quality of the results
reflects the genuinely adequate underlying physical model.

The thermodynamic cycle used to calculate relative
hydration energies between species A and B is shown in
Figure 2.

From this cycle, the relative free energy of hydration is

The statistical perturbation theory was used to calculate
the differences of free energies between solvated and gas-
phase species A and B (∆G(AfB, liq) and ∆G(AfB, gas),
respectively). When B was set to nothing, the absolute free
energy of hydration of species A was obtained. This was

done to methane to anchor the other hydration free energies
and to obtain their absolute values.

To calculate the ∆G(AfB, liq) and ∆G(AfB, gas), the
standard statistical perturbation theory procedure was used.
Differences between atoms of molecules A and B were
switched on according to a parameter, 0 < λ < 1, with λ )
0 corresponding to A, and λ ) 1 to B. Then the interval
from 0 to 1 was divided into a number of subintervals, and
for each point between two intervals, a corresponding mixture
of molecules A and B was created. The difference in free
energies between systems corresponding to such points i and
j was calculated according to eq 21:17

Here, the brackets, 〈...〉i, signify averaging of the value
inside the brackets over the configurational space of the
mixed system at point i, and Ei and Ej are energies of the
mixed systems i and j. In other words, the free energy
difference between the molecular systems A and B is the
thermodynamic average of their energy differences, and the
whole change from A to B is broken into a number of steps
in order to speed up the convergence.

The averaging was performed with Monte Carlo calcula-
tions for a single solute molecule in a water box, thus,
corresponding to infinitely dilute solutions. The simulations
proceeded as described in the previous subsection, except
that a number of water molecules equal to the number of
non-hydrogen atoms in the solute were removed (for
example, for the methanol to ethane perturbation, the number
of water molecules was equal to 214 instead of the pure water
box of 216).

III. Results and Discussion

A. Fitting Electrostatic Part of the Force Field. As
described above, fitting polarizabilities to the three-body
energies and charges to the interaction energies with dipolar
probes were the first two steps of the POSSIM force field
production. While the further fine-tuning did lead to some
adjustments, we still view reproducing the quantum me-
chanical three- and two-body energies as an important part
of the force field validation. Listed in Tables 1 and 2 are
three-body and two-body energies resulting from the final

Figure 2. Thermodynamic cycle used to assess relative
hydration energies.

∆Hvap ) E(gas) - E(liq) + RT (19)

∆∆Ghyd ) ∆Ghyd(B) - ∆Ghyd(A) ) ∆G(A f B,liq) -
∆G(A f B,gas) (20)

Table 1. Three-Body Energy Deviations from Quantum
Mechanical Data, kcal/mol

molecule
deviation, kcal/mol

maximum energyrms maximum

H2O 0.2682 0.3688 -0.5620
CH3OH 0.2080 0.3588 -0.3700
NMA 0.3651 0.5902 -0.6293

Table 2. Two-Body Energy Deviations from Quantum
Mechanical Data, kcal/mol

molecule
deviation, kcal/mol

maximum energyrms maximum

H2O 1.1482 1.4819 -12.4741
CH3OH 1.1627 1.3804 -12.1679
NMA 1.7319 2.6399 -14.9697

∆G(i f j) ) -RTln(〈exp[(-Ej - Ei)/RT]〉i) (21)
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parameter sets. The following conclusions can be drawn from
these data. The rms deviations of the three-body energies
are within ca. 0.37 kcal/mol, with the largest deviation
corresponding to the case of N-methylacetamide. This result
is not surprising, given that parameter fitting for amides is
by no means a straightforward business. For example, we
had to build three separate parameter sets for the formamide,
acetamide, and N-methylacetamide while producing the
previous version of the polarizable force field (PFF0).9,12

The acetamide parameters were ultimately used for the
protein backbone.9 Likewise, the two-body energies display
a similar trend, with the maximum rms deviation (for NMA)
being ca. 1.73 kcal/mol. While the absolute value of this
error seems to be large, it constitutes only about 11.5% of
the two-body energy itself. It is very likely that this error is,
in fact, not much greater than that resulting from the
imperfections of the quantum mechanical calculations as
such.

As an added test, we have compared the POSSIM dipole
moments with their experimental values in Table 3. It can
be seen that the results are rather close and do not suffer
from the overpolarization which is characteristic for the
nonpolarizable fixed-charges force field. For example, the
TIP4P monomer dipole moment is 2.18 D. This overpolar-
ization is necessary to account for the increased dipole
moment in polar media (such as bulk water), but it creates
a nonphysical situation in the gas phase. This problem is
resolved by applying the polarization formalism.

B. Alkane Parameters. It can be noticed that results for
methane, ethane, propane, and butane are not present in
Tables 1-3. The nonbonded parameters (including the
electrostatics) for these systems were produced in a different
fashion. Following the approach employed in creating the
previous generation of the polarizable force field,12 we set
the electrostatic charges on alkane atoms to be the same as
in the OPLS-AA. That is, each aliphatic hydrogen had a
charge of 0.06 electrons, and the sp3 carbons were charged
by -0.24, -0.18, or -0.12 electron units, depending on
the number of hydrogens attached to the carbon. Since the
-CHn- groups are essentially spherically symmetric, the
magnitudes of the charges do not make a significant
difference. This has been shown previously by simulating
pure liquid and hydrated saturated hydrocarbons.19 Further-
more, the σ and ε Lennard-Jones parameters were also set
to their OPLS-AA values, 3.5 Å and 0.066 kcal/mol for
carbons and 2.5 Å and 0.030 kcal/mol for hydrogens,
respectively. Finally, the isotropic polarizabilities for the
carbon atoms in the POSSIM PFF are the same as had been
previously found to perform well in the PFF0.12 For these
atoms, the inverse polarizability R-1 ) 0.5069 Å-3. No
polarizabilities were assigned to the aliphatic hydrogen
atoms.

Therefore, the nonbonded parameters for the alkanes were
not refitted. However, the torsional coefficients for ethane,
propane, and butane, H-C-C-H, H-C-C-C, and C-
C-C-C, torsions were refitted to reproduce quantum
mechanical energy profiles.

C. Torsional Coefficients. Torsional energy coefficients
have been fitted to reproduce LMP2/cc-pVTZ(-f) energy
profiles as described in the Methods section. The results of
performing this task are shown in Table 4. Our original goal
was to achieve a ca. 0.1 kcal/mol agreement with the
quantum mechanical results, but the final accuracy was much
better than that. The reason is that the molecules which we
considered contained no coupled torsions (such as, for
example, protein backbone φ and Ψ). This was true even
for the NMA molecule. Therefore, we were dealing with one-
dimensional torsional profiles, and adjusting the three Fourier
coefficients for each torsion was enough for achieving the
high level of accuracy.

D. Gas-Phase Dimerization Energies and Interatomic
Distances. The next step in our force field development, and
perhaps the first truly significant test of the new force field,
was reproducing gas-phase binding energies and geometries
of the complexes. Given in Tables 5 and 6 are the results of
comparing our polarizable force field application with
quantum mechanical and experimental data. As described
in the previous section, the quantum mechanical results,
unless otherwise noted, are taken from applying our previ-
ously developed extrapolation technique utilizing calculations
with LMP2/cc-pVTZ(-f) and LMP2/cc-pVQZ basis sets.

Table 5 contains results for the aliphatic hydrocarbons (as
represented by methane), water, and methanol. Unlike in
generating the previous version of the polarizable force field
(PFF012), we have calculated energies for both the ho-
modimer of methanol and its heterodimer with water.
Moreover, both methanol dimers with water in which the
latter serves as an electron donor and acceptor have been
considered. This was also our routine when dealing with the
NMA. We plan to follow this pattern in the future develop-
ment of the POSSIM force field. Methane-water dimers
were not considered, as no true hydrogen bond is formed in
this case.

Table 3. Dipole Moments, in Debye

molecule
dipole moment,
experimentala

dipole moment,
calculated

H2O 1.85 1.98
CH3OH 1.69 2.00
NMA 3.7 3.81

a Ref 18.

Table 4. Torsional Energy, in kcal/mol

molecule dihedral angle values energy, QMa energy, PFF

C2H6 H-C-C-H 0° 2.7762 2.7751
60° 0.0000 0.0000

C3H8 H-C-C-C 0° 3.1298 3.1294
60° 0.0000 0.0000

C4H10 C-C-C-C 0° 5.5337 5.5371
60° 0.5751 0.5752
120° 3.2104 3.2069
180° 0.0000 0.0000

CH3OH H-C-O-H 0° 1.0643 1.0647
60° 0.0000 0.0000

NMA C-C-N-C 0° 2.0170 2.0185
180° 0.0000 0.0000

H-C-N-C 0° 0.0000 0.0000
45° 0.0878 0.0328
60° 0.0049 0.0480

H-C-C-N 0° 0.0000 0.0000
45° 0.2093 0.2154
60° 0.2509 0.2551

a LMP2/cc-pVTZ(-f), this work.
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As demonstrated by the results in Table 5, the dimerization
energies for all of the systems were within 0.5 kcal/mol of
their quantum mechanical counterparts. For the methanol-
methanol dimer, the agreement is much better than that. A
water-water interaction energy lower than -5 kcal/mol has
been suggested previously; therefore, the relatively high error
in this case is probably not a reason for concern. The
distances between the heavy atoms are within ca. 0.1 Å of
the quantum mechanical results. Overall, the developed PFF
performs well in reproducing these gas-phase dimerization
properties.

It can also be seen that the POSSIM PFF is showing a
slight improvement over the PFF0. And the improvement
with comparison to the fixed-charges OPLS-AA is quite
dramatic. For example, as shown in Table 5, the water-water
dimerization energy is overestimated by almost 2 kcal/mol
if the OPLS-AA model is used. This is natural, as fixed-
charges models need to overpolarize individual molecules
in order to capture the overall polarization increase in the
bulk polar media (such as, for example, bulk water).
Therefore, our fast second-order polarization technique does
not require any sacrifice of computational accuracy as
compared to the full-scale polarizable model (PFF0) and
outperforms the fixed-charges one.

Given in Table 6 are results of simulating NMA dimers
in the gas phase. Fitting parameters for the NMA molecule
is generally a more complex task. One reason for that is that
quantum mechanical data for such dimerization energies are
often less reliable. Shown in the table are just two values of
the trans-NMA dimerization energy. And the full range of
this piece of data which can be found in the literature is
actually considerably wider. Perhaps this is why some authors
choose to simply ignore the NMA gas-phase dimerization
energy when producing or reparameterizing a force field.25

We took a middle-road approach in regard to this matter.
While we did use the quantum mechanical value for the
NMA(t)-NMA(t) dimer, we did not pose as strong restric-

tions on the PFF results as we did for the other systems. We
considered an error of 0.64 kcal/mol to be acceptable, given
the uncertainty of the quantum mechanical results themselves.
At the same time, we adhered to the stronger criteria when
reproducing geometries of the complexes, with the error
being within ca. 0.1-0.15 Å range.

The new POSSIM PFF performs better in reproducing the
NMA(t) and NMA- water dimers than both force fields used
for comparison, the fixed-charges OPLS-AA and the previ-
ously generated PFF0. While the OPLS-AA NMA(t) dimer
has an energy which is slightly closer to the QM value than
the POSSIM PFF, this is achieved at the cost of underesti-
mating the N · · ·O distance by about 0.16 Å versus the 0.05
Å error in the new PFF. As far as the PFF0 is concerned, it
provides much better values for both the energy and the
distance for the NMA(c) dimer but significantly underesti-
mates both the distance and the magnitude of the energy for
the dimer of the NMA in its trans form. The reason is that
we considered only the cis-NMA dimer when the PFF0 was
developed, since its dimerization energy is stronger than for
the NMA(t). At the same time, the trans-NMA is much less
abundant than the cis form, and it is the NMA(t) which forms
the building block of protein and peptide backbones. This is
why we choose to use the NMA(t) dimer as the fitting target
in this work, and our results definitely show an improvement
over the PFF0 in this respect.

E. Simulations of Pure Liquids. Calculated heats of
vaporization and molecular density are shown in Table
7. It follows from the values of the average errors that
the overall performance of the POSSIM PFF is superior
to both that of the OPLS-AA and PFF0. The average PFF
deviation of the heats of vaporization is 0.083 kcal/mol
versus the 0.0.129 kcal/mol for the OPLS-AA and 0.240
kcal/mol for the PFF0. The average error in the molecular
volume is 1.485 Å3, which is a noticeable improvement,
as compared to the PFF0, and is slightly better than that
for the OPLS-AA. Moreover, the worst (although still

Table 5. Gas-Phase Dimerization Energies (kcal/mol) and Distances (Å) for H2O, CH4, and CH3OH

system
energy distance

QMa OPLSa PFF0b PFFc QMa OPLSa PFF0b PFFc

H2O-H2O O · · ·O -5.02 -6.78 -5.54 -4.52 2.91 2.68 2.88 2.91
CH4-CH4 C · · ·C -0.5d -0.48 -0.44 -0.48 3.7d 3.77 3.86 3.76
MeOH-MeOH O · · ·O -5.59 -6.41 -5.63 -5.59 2.80 2.78 2.81 2.81
MeOH-OH2 O · · ·O -4.90e -5.12 2.86e 2.80
MeHO-HOH O · · ·O -4.77f -4.93 2.91f 2.90

a Refs 7 and 12. Results for water are from ref 20. b Ref 12. PFF0 data for water are from ref 21. c This work. d Ref 23. e Ref 22.
f Methanol-water results: from this work, LMP2 with cc-pVTZ(-f) to cc-pVQZ extrapolation, as in ref 15.

Table 6. Gas-Phase Dimerization Energies (kcal/mol) and Distances (Å) for NMA (cis and trans conformations)

system
energy distance

QMa OPLSa PFF0a PFFb QMa OPLSa PFF0a PFFb

NMA(t)-NMA(t) N · · ·O -8.53 -7.96 -5.24 -7.89 2.97 2.81 2.84 2.92
-7.2c

d
NMA(c)-NMA(c) N · · ·O -14.4 -11.3 -14.1 -9.48 2.92 2.83 2.90 2.92
NMA(t)-OH2 HN · · ·O -5.82 -4.86 3.03 3.02

-4.8c

NMA(t)-HOH CO · · ·O -7.91 -7.10 2.91 2.79
-7.0c

a Ref 12 for NMA(c) and this work for NMA(t). b This work. c Ref 24. d Ref 25.
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acceptable) results for the new PFF are obtained for
methane and ethane, which are probably not the most
relevant pure liquids considered, given their very low
boiling temperatures of -161.49 and -88.63 °C, respec-
tively. At the same time, the density of the NMA was
improved very significantly as compared to the PFF0, and
the NMA molecule is extremely important as the building
block for protein backbones. Overall, all three models
perform well in simulating the pure liquids involved.
Therefore, we have clearly shown that our second-order
approximation for calculating induced electrostatic dipoles
is completely adequate, as is it capable of reproducing
both gas-phase and liquid properties at a good level of
accuracy.

F. Free Energy Perturbations. Presented in this subsec-
tion are the results of calculating relative and absolute free
energies of hydration for methane, ethane, and methanol. In
contrast with the work described above, this part of the
project was carried out as a test and not a parametrization;
thus, we did not refit any parameters to obtain good results.
Therefore, these calculations can serve as a test of the
physical robustness of the model. The successful results
presented here have a double value of validating both the
force field parameters and the overall methodological and
POSSIM software robustness in calculating free energy
changes with the statistical perturbation theory.

The calculated values of the free energies are shown in
Table 8. We carried out three sets of these calculations:
transforming methanol into ethane (by converting the -OH
group into a methyl), shrinking the methyl group into an
aliphatic hydrogen to mutate ethane into methane, and finally,
making the methane molecule disappear altogether by
converting all of the atoms into dummy ones. This last step
permits us to anchor all of the results into the energy of
solvation of a dummy atom (i.e. zero); thus, we can obtain
the absolute hydration energies for all of the species involved.

According to the data in Table 8, the agreement of our
results with those of the experiment is excellent. The
hydration energy of methane is correct within 0.115 kcal/
mol. The nonobvious trend of the slight hydration energy
drop between methane and ethane is reproduced correctly,
even though it is exaggerated by about 0.15 kcal/mol (which
actually leads to the absolute hydration energy of ethane
being in a better agreement with the experiment). The
difference in hydration energies between methanol and ethane
are correct within ca. 0.21 kcal/mol. Overall, the absolute
values of these energies are within 0.13 kcal/mol of their
experimental counterparts. It is important that this agreement
was achieved without any specific fitting. These results
represent a test of the parameters produced as described
above; therefore, they attest to the robustness of the physical
model and the POSSIM software.

IV. Conclusions

We have utilized a previously suggested fast polarization
formalism to create a software package named POSSIM
and produced polarizable force field parameters for several
molecular systems relevant in organic and biological
simulations. The agreement with gas-phase and liquid
experimental data has been found to be very good.
Moreover, we tested POSSIM by calculating absolute free
energies of hydration of methane, ethane, and methanol
and determined them to be within 0.13 kcal/mol of their
experimental counterparts. We believe that this verifies
the robustness of the parameters and the software. We
view this work as the first step in creating an extensive
set of force field parameters to be used in organic and
biophysical simulations, including modeling of proteins
and protein-ligand complexes. Furthermore, we have been
able to successfully use a procedure for utilizing both
quantum mechanical and experimental data as fitting
targets. We hope our results will further prove the
importance of treating the electrostatic polarization ex-
plicitly, when building empirical force fields, and will
contribute to making polarizable calculations more af-
fordable computationally.

Acknowledgment. The project described was supported
by Grant Number R01GM074624 from the National Institute
of General Medical Sciences. The content is solely the
responsibility of the authors and does not necessarily
represent the official views of the National Institute of

Table 7. Liquid State Heats of Vaporization (kcal/mol) and Molecular Volumes (Å3), at 25°C, Except for CH4 (-161.49 °C),
C2H6 (-88.63 °C), C3H8 (-42.1 °C), C4H10 (-0.5 °C), and NMA (100 °C)

system
∆Hvap V

exptla OPLSa PFF0b PFFc exptla OPLSa PFF0b PFFc

H2O 10.51 10.46 10.54 10.577 ( 0.055 30.0 30.0 30.15 29.891 ( 0.226
CH4 1.96 2.19 1.89 2.209 ( 0.026 62.8 57.2 62.2 56.863 (0.381
C2H6 3.62 3.44 3.32 3.456 ( 0.063 91.5 92.5 94.4 92.140 ( 0.571
C3H8 4.49 4.55 4.79 4.499 ( 0.129 126.0 125.2 123.9 126.096 ( 0.903
C4H10 5.35 5.43 5.62 5.335 ( 0.164 160.3 161.3 157.2 163.433 ( 1.416
NMA 13.3 13.6 13.9 13.319 ( 0.372 135.9 133.9 128.3 135.670 ( 0.566
CH3OH 8.95 8.95 8.84 9.005 ( 0.140 67.7 68.3 67.0 67.447 ( 0.535
average error 0.129 0.240 0.083 1.574 2.450 1.485

a Refs 7 and 12. b Refs 12 and 21. c This work.

Table 8. Free Energies of Hydration, kcal/mol

process ∆Ghyd, experiment ∆Ghyd, PFF (this work)

nothing f CH4 2.00a 2.115 ( 0.057
CH4 f C2H6 -0.17a -0.317 ( 0.040
C2H6 f CH3OH -6.94b -6.748 ( 0.053

absolute ∆Ghyd (from above data)
CH4 2.00a 2.115 ( 0.057
C2H6 1.83a 1.798 ( 0.070
CH3OH -5.11b -4.950 ( 0.088

a Ref 19. b Ref 26.
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Abstract: In the process of evaluating intrinsic electronic chemical potentials and related
properties of anions in the gas phase, positive values for this quantity often arise. We herein
examine in detail this result in terms of computational grounds. At a low level of theory, this
result is often obtained, but its origin is mainly traced to the fact that the LUMO energy level is
not really converged. Therefore, this outcome may be an artifact of the calculation. We establish
the minimum basis set analysis that is to be performed before the electronic chemical potential
of charged electron donors, in the absence of medium (solvent) effects, may be safely calculated
to yield physically meaningful results. The implications that this result may have on the
phenomenological chemical reactivity theory are discussed in detail, mainly those related to
the definition of the electron-donating (nucleophilicity) ability of anions in the gas phase. The
arguments given are illustrated for a large number of atomic and molecular systems at different
levels of theory.

Introduction

The concepts introduced from the density functional theory
of chemical reactivity by Parr and Yang1 have had an
enormous impact in the fields of general physical chemistry
and physical organic chemistry. A set of recent review works
illustrates well this point.2-10 However, one of the most
relevant achievements of the research work done in this field
is that useful concepts like electronic chemical potential,
global and local electrophilicity indexes, and electrophilic
and nucleophilic Fukui functions have started to be intro-
duced in modern texts of organic chemistry,11 and therefore
they are expected to be incorporated in the current language
of the physical organic chemist community. Of central
importance is the electronic chemical potential µ introduced
by Parr and co-workers.12-16 This quantity is defined as

where E is the ground state energy of an N electron atomic
or molecular system under the influence of an external
potential υ(r) due to the compensating nuclear charges in
the system. In eq 1, the derivative is taken at fixed υ(r).
The finite difference approximated expression for µ is given
as follows:2

in terms of the first vertical ionization potential I and electron
affinity A, or in terms of the one-electron energies of the
frontier molecular orbitals HOMO and LUMO, if the frozen
orbital approximation together with Janak’s theorem is used.2

Extensions to incorporate solvent effects on these properties
have been reported for cations and neutrals.17,18 It is pertinent
for the discussion that follows to remind ourselves that the
recommended definitions for I and A for atoms and mol-
ecules19 are

and
* Corresponding author phone: +562 978 7272; fax: +562 271

3888; e-mail: claudioperez@icaro.dic.uchile.cl.
† Departamento de Quı́mica.
‡ Departamento de Fı́sica.

µ ) [∂E
∂N]υ(r)

(1)

µ = -[I + A
2 ] ≈ [εH + εL

2 ] (2)

S f S+ + e-; ∆E ) E(S+) - E(S) ) I (3)

S- f S + e-; ∆E ) E(S) - E(S-) ) A (4)
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respectively. Experimental evidence shows that, for positively
charged species and neutrals, the quantities I and A are in
general positive numbers (with some exceptions for A), with
I . A, because the energy required to remove one electron
from negative species is less than that needed to take out an
electron from a neutral.20,21 Therefore, by inspection of the
first equality in eq 2, it follows immediately that, for cations
and neutrals, the condition µ < 0 is always fulfilled.
Unfortunately, experimental data regarding A values for
anions are in general not available, and the second ap-
proximate expression for the electronic chemical potential
given in eq 2 is used instead. In this work, the focus is put
on the theoretical estimates of ionization potentials and
electron affinities of anions from ab initio methods and their
effect on the computed values of the electronic chemical
potential in the gas phase.

If Janak’s theorem is used, under the general constraint
that εL > εH, the following computational cases may arise:

(a) εL > 0 > εH (normal case: bound HOMO and unbound
LUMO states)

(b) 0 > εL > εH (current computational case: bound HOMO
and LUMO states)

(c) εL > εH > 0 (less current computational case: unbound
HOMO and LUMO states).

We shall now examine them in the following.
Case a: εL > 0 > εH. This case leads to the following

possible situations: (i) µ > 0 or (ii) µ < 0. For the former,
we have

which entails that εL > -εH. This condition satisfies the
constraint εL > εH, for |εL| > |εH|.

For µ < 0, on the other hand, we have

that leads to εL < -εH, a result also consistent with the
condition εL > εH, for |εL| < |εH|. Therefore, for the normal
case of bound HOMO and unbound LUMO states, the
occurrence of positive values of the electronic chemical
potential is a possible outcome. We will come back to this
problem, and we will show that this statement has only a
physical meaning if the LUMO state is conveniently

converged, and that this convergence requires a thorough
analysis of the basis set used.

Case b: 0 > εL > εH. For µ > 0, we have

which contradicts the hypothesis 0 > εL > εH because it entails
that εH > -εL, which is a positive number.

For µ < 0, we have

which entails that εH < -εL, a result consistent with the
hypothesis, and is therefore possible. Thus, for the case where
both HOMO and LUMO levels are bound states, the only
meaningful representation of the electronic chemical potential
is the one associated with a negative value.

Case c: εL > εH > 0. This case can never occur, because it
leads to a situation where A < I < 0, which contradicts the
experimental results.

Table 1 summarizes the electronic chemical potential and
chemical hardness for a series of anions evaluated in the
literature. It may be seen that, independent of the basis set
used, Hartree-Fock theory describes the electronic structures
of anions within the normal case a discussed above, that is,
with bound HOMO and unbound LUMO states. Compounds
labeled 1-6 in Table 1 were reported by Mendez et al.22 as
part of a theoretical study on the basicity of p-substituted
phenolates and the elimination to substitution ratio in the
reaction with the reference electrophile p-nitrophenyl bro-
mide. These reactions were analyzed in terms of the empirical
HSAB rule so that the focus was put on the hardness
(softness) values rather than on the positive values of the
electronic chemical potential that result after using the gas-
phase one-electron energies of the HOMO and LUMO levels
reported therein.22 In order to further analyze the effect of
intrinsic positive electronic chemical potentials, and therefore
free from solvent complications, we take another benchmark
model of acid-base equilibrium of alcohols in the gas
phase.23 Therein, a relationship between relative proton
affinities and relative electronic chemical potentials was
proposed, using the methoxide anion as a reference for both
scales. This model was assumed to correctly describe the
gas-phase acidity pattern within the family of alkyl-
substituted alcohols in the gas phase, using a thermodynamic

Table 1. HOMO and LUMO Energy Levels (εH and εL, respectively)a

compound εH εL µ η method reference

1 (NO2)C6H4O- -3.27 5.80 1.27 9.06 HF/3-21G(d) 22
2 (COCH3)C6H4O- -2.48 7.40 2.46 9.88 HF/3-21G(d) 22
3 HC6H4O- -1.58 9.25 3.84 10.83 HF/3-21G(d) 22
4 (CH3)C6H4O- -1.52 9.14 3.81 10.67 HF/3-21G(d) 22
5 (Br)C6H4O- -2.12 8.63 3.25 10.75 HF/3-21G(d) 22
6 (CH3O)C6H4O- -1.66 8.93 3.63 10.59 HF/3-21G(d) 22
7 CH3O- -1.921 12.785 5.432 7.353 HF/6-31G(d) 23
8 CH3CH2O- -2.161 11.954 4.896 7.057 HF/6-31G(d) 23
9 (CH3)2CHO- -2.376 11.398 4.511 6.887 HF/6-31G(d) 23
10 (CH3)3CO- -2.595 10.819 4.112 6.707 HF/6-31G(d) 23
11 (CH3)3CCH2O- -2.643 10.236 3.797 6.439 HF/6-31G(d) 23

a Corresponding values of electronic chemical potential (µ) and chemical hardness (η) for a series of anions. All values are in eV.

µ = - (I + A)
2

≈
(εH + εL)

2
> 0 (5)

µ = - (I + A)
2

≈
(εH + εL)

2
< 0 (6)

µ = - (I + A)
2

≈
(εH + εL)

2
> 0 (7)

µ = - (I + A)
2

≈
(εH + εL)

2
< 0 (8)

Electronic Chemical Potential of Anions J. Chem. Theory Comput., Vol. 5, No. 11, 2009 2945



cycle by combining the proton affinity (PA) of neutrals and
anions. In this way, the acid-base equilibria are described
in a more balanced way by including the contributions of
the neutral and charged species. The variations in proton
affinity given by ∆PA ) PA(RO-) - PA(CH3O-) were
related to the variations in total electronic chemical potential
given by ∆µt ) ∆µ- - ∆µN, where

and

are the contributions of the change in electronic chemical
potential of anions and neutrals, respectively.23 The values
reported in ref 23 show that the contribution of the anions
largely outweighs the contribution from the changes in

electronic chemical potential of the neutrals, and therefore,
it is the contribution of the alkoxides that drives the proton
transfer involved in the gas-phase acid-base equilibria. The
alkoxides involved in that study are quoted in Table 1 and
labeled as compounds 7-11. This ordering is in agreement
with the gas-phase acidity scale of alcohols.24 The inversion
of this ordering in the solution phase is well-known,24 and
it has been attributed to a differential solvent effect which
follows an inverse trend with the anion size.25

Table 2 shows the values of gas-phase electronic chemical
potentials for a series of anions involved in gas-phase
nucleophilic substitution reactions. The electronic quantities
were evaluated in this work at the HF/6-311++G(d,p) level
of theory, using the Gaussian 03 program package.26 The
addition of diffuse functions is a usual prescription when
dealing with anions in the gas phase. This result is useful to
show that, even in the case where diffuse functions are
incorporated in the calculations, the occurrence of positive
values of µ for anions in the gas phase may be a current
outcome.

In the process of review of the present material, two
reviewers grabbed our attention by suggesting that the
numerical data presented in Tables 1 and 2 were insufficient
to discuss the sign of the electronic chemical potential of
anions in the gas phase, and that the occurrence of calculated
positive values for this quantity could be an artifact of the
basis set used. One of the reviewers pointed out that the
problem should be related to a “definition of electron affinity
for system(s) that do not bind another electron”. The
definition of the intrinsic electronic chemical potential
proposed by Parr et al.12 entails the energy difference
between the neutral and a “metastable” anion. The metastable
anion model has been recently addressed in the literature.27,28

A second choice is to just put A ) 0 for anions in the gas
phase. The reviewers went on to propose that, within
Hartree-Fock theory, the LUMO energy and the electron

Table 2. HOMO and LUMO Energy Levels (εH and εL,
respectively)a

compound εH εL µ η

1 CH3CO2
- -5.10 5.38 0.14 10.48

2 CH3CH2O- -2.99 4.38 0.70 7.36
3 CN- -5.23 6.66 0.72 11.89
4 NO3

- -6.04 7.56 0.76 13.60
5 SH- -2.55 5.22 1.33 7.77
6 Br- -3.79 6.94 1.57 10.74
7 OH- -2.86 6.04 1.59 8.89
8 CH3S- -2.21 5.52 1.65 7.73
9 CH3O- -2.74 6.07 1.66 8.82
10 Cl- -4.08 8.15 2.04 12.24
11 NH2

- -1.26 5.58 2.16 6.84
12 N3

- -2.82 7.97 2.57 10.79
13 F- -4.83 14.65 4.91 19.47
14 I- -2.67 21.57 9.45 24.24
15 H- -0.10 20.11 10.00 20.21

a Corresponding values of electronic chemical potential (µ) and
chemical hardness (η) for a series of anions. All values are in eV.

Table 3. HOMO and LUMO Energy Levels from Reference HF/6-311++G(d,p) and HF/AUG-cc-pVDZ, HF/AUG-cc-pVTZ,
and HF/AUG-cc-pVQZ Levels of Theory

Compound εH
(1) εH

(2) εH
(3) εH

(4) εL
(1) εL

(2) εL
(3) εL

(4)

NO2PhO- -3.270 -3.661 -3.890 -4.052 5.800 3.566 2.192 1.348
CH3COPhO- -2.480 -3.103 -3.098 -3.366 7.400 3.204 2.872 1.585
(CH3)3CCH2O- -2.643 -3.296 -3.305 -3.586 10.236 3.522 3.136 1.481
NO3

- -6.040 -5.979 -5.984 -5.975 7.560 6.859 6.045 5.520
CH3CO2

- -5.100 -5.094 -5.121 -5.124 5.380 3.982 3.627 3.412
PHO- -1.580 -2.319 -0.085 -2.305 9.250 3.538 0.117 2.965
CH3PhO- -1.520 -2.210 -2.199 -2.197 9.140 3.293 2.927 2.738
BrPhO- -2.120 -2.791 -2.770 -2.766 8.630 3.626 3.252 2.990
CH3OPhO- -1.660 -2.322 -2.303 -2.588 8.930 3.160 2.849 1.377
(CH3)2CHO- -2.376 -3.177 -3.183 -3.185 11.398 3.934 3.549 3.324
(CH3)3CO- -2.595 -3.387 -3.391 -3.392 10.819 3.833 3.472 3.259
CH3O- -2.740 -2.801 -2.805 -2.810 6.070 4.345 3.951 3.720
CH3S- -2.210 -2.257 -2.250 -2.249 5.520 4.165 3.782 3.559
CH3CH2OH- -2.161 -3.013 -3.016 -3.019 4.380 4.032 3.629 3.406
OH- -2.860 -2.935 -2.951 -2.959 6.040 5.390 4.861 4.639
N3

- -2.820 -2.853 -2.835 -2.834 7.970 6.460 5.852 5.354
H- -0.100 -1.223 -1.244 -1.248 20.110 7.666 6.587 6.078
F- -4.830 -4.931 -4.924 -4.925 14.650 13.850 12.042 10.785
Br- -3.790 -3.800 -3.792 -3.791 6.940 8.151 6.846 5.913
Cl- -4.080 -4.096 -4.091 -4.090 8.150 8.850 7.864 7.036
CN- -5.230 -5.206 -5.207 -5.205 6.660 6.378 5.699 5.209
SH- -2.550 -2.577 -2.582 -2.581 5.220 4.823 4.285 3.957
NH2

- -1.260 -1.291 -1.312 -1.323 5.580 5.016 4.500 4.235

∆µ- ) [µ(RO-) - µ(CH3O
-)] (9)

∆µN ) [µ(CH3OH) - µ(ROH)] (10)
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affinity should go to zero if a sufficiently large basis set is
used. Both reviewers suggested a more complete discussion
about the electron affinities and electronic chemical potential
of anions in the gas phase by performing a thorough
computational analysis in the infinite basis set limit, by
adding diffuse functions until the LUMO energy level is
converged. In order to perform such an analysis, we have
chosen a modification of the even-tempered basis set
approach, which consists of adding, in a systematic way,
more and more diffuse functions of each symmetry to a well-
established extended basis set like the family of aug-cc-pvNZ
(with N ) 2, 3, 4, 5...) bases.29

The procedure used to converge the HOMO and LUMO
energy levels was as follows: First of all, we considered the
series depicted in Table 3 and used the calculation with the
reference HF/6-311++G(d,p) wave function quoted in Table
3 as εH

(1) and εL
(1). Then, the structures of anions were

reoptimized using the Dunning-Huzinaga basis set (aug-
cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ). The HOMO
and LUMO energy levels obtained from these calculations
are quoted in Table 3 as εH

(2), εL
(2), εH

(3), εL
(3), εH

(4), and εL
(4),

respectively.

Note that the HOMO level is converged more rapidly than
the LUMO level by increasing the basis set. Table 4
summarizes the calculated electronic chemical potential and
chemical hardness using the numerical data of Table 3, using
eq 2. It may be seen that increasing the basis set results in
the inversion of the sign of the electronic chemical potential
for 6 out of 23 anions within the series.

Some of the nonconverged anions quoted in Table 4 were
selected for further analysis. They are displayed in Table 5.
Note that this series included the harder anions that are
expected to be more difficult to converge. This series was
subjected to even-tempered basis set calculations. Specifi-
cally, the procedure consists of taking the geometry obtained
at the HF/AUG-cc-pVQZ level of theory, and the exponents
of the basis set were reduced following a geometric progres-
sion [(1)/(2)]n for n ) 1-7. The results are quoted in Table
6 as εH

(b), εL
(b), εH

(c), εL
(c), εH

(d), εL
(d), εH

(e), εL
(e), εH

(f), εL
(f),

εH
(g), εL

(g), εH
(h), and εL

(h), respectively.

Note that, following the even-tempered procedure, the
LUMO energy level dramatically diminishes, yet the com-
plete convergence limit has not been yet attained. However,

Table 4. Electronic Chemical Potential and Chemical Hardness from Reference HF/6-311++G(d,p) and HF/AUG-cc-pVDZ,
HF/AUG-cc-pVTZ, and HF/AUG-cc-pVQZ Levels of Theory in eV Units

compound µ(1) µ(2) µ(3) µ(4) η(1) η(2) η(3) η(4)

NO2PhO- 1.265 -0.048 -0.849 -1.352 9.070 7.227 6.082 5.400
CH3COPhO- 2.460 0.050 -0.113 -0.891 9.880 6.307 5.969 4.951
(CH3)3CCH2O- 3.797 0.113 -0.085 -1.052 12.879 6.818 6.441 5.067
NO3

- 0.760 0.440 0.031 -0.227 13.600 12.838 12.029 11.495
CH3CO2

- 0.140 -0.556 -0.747 -0.856 10.480 9.076 8.748 8.537
PHO- 3.835 0.610 0.016 0.330 10.830 5.858 0.202 5.270
CH3PhO- 3.810 0.542 0.364 0.271 10.660 5.502 5.126 4.935
BrPhO- 3.255 0.417 0.241 0.112 10.750 6.416 6.022 5.756
CH3OPhO- 3.635 0.419 0.273 -0.606 10.590 5.482 5.152 3.965
(CH3)2CHO- 4.511 0.378 0.183 0.070 13.774 7.112 6.732 6.509
(CH3)3CO- 4.112 0.223 0.041 -0.066 13.414 7.220 6.864 6.652
CH3O- 1.665 0.772 0.573 0.455 8.810 7.145 6.756 6.530
CH3S- 1.655 0.954 0.766 0.655 7.730 6.422 6.032 5.807
CH3CH2OH- 0.695 0.510 0.307 0.193 7.370 7.045 6.646 6.425
OH- 1.590 1.227 0.955 0.840 8.900 8.325 7.812 7.597
N3

- 2.575 1.803 1.508 1.260 10.790 9.313 8.687 8.188
H- 10.005 3.221 2.671 2.415 20.210 8.890 7.830 7.326
F- 4.910 4.459 3.559 2.930 19.480 18.781 16.966 15.709
Br- 1.575 2.175 1.527 1.061 10.730 11.951 10.637 9.704
Cl- 2.035 2.377 1.887 1.473 12.230 12.946 11.955 11.127
CN- 0.715 0.586 0.246 0.002 11.890 11.584 10.906 10.415
SH- 1.335 1.123 0.852 0.688 7.770 7.400 6.867 6.538
NH2

- 2.160 1.863 1.594 1.456 6.840 6.308 5.812 5.558

Table 5. Even-Tempered Calculations of HOMO and LUMO Energy Levels Using HF/AUG-cc-pVQZ Level of Theory As
Reference in eV Units

compound εH
(a) εL

(a) εL
(b) εL

(c) εL
(d) εL

(e) εL
(f) εL

(g) εL
(h)

CH3O- -2.810 3.720 2.414 1.622 1.044 0.652 0.596 0.438 0.322
CH3S- -2.249 3.559 2.382 1.632 1.089 0.995 0.770 0.595 0.460
CH3CH2OH- -3.019 3.406 2.150 1.483 0.992 0.938 0.731 0.570 0.444
OH- -2.959 4.639 2.646 2.045 1.498 1.077 0.768 0.545 0.386
N3

- -2.834 5.354 3.161 2.132 1.605 1.069 0.916 0.684 0.510
H- -1.248 6.078 3.216 2.537 1.963 1.490 1.107 0.807 0.581
F- -4.925 10.785 5.870 4.283 3.019 2.092 1.441 0.995 0.690
Br- -3.791 5.913 3.467 2.623 1.911 1.356 0.950 0.663 0.463
Cl- -4.090 7.036 4.008 2.999 2.164 1.525 1.063 0.740 0.516
CN- -5.205 5.209 3.180 2.120 1.442 0.973 0.669 0.466 0.357
SH- -2.581 3.957 2.682 1.837 1.344 0.966 0.689 0.488 0.345
NH2

- -1.323 4.235 2.627 1.793 1.186 0.819 0.557 0.381 0.267
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at this limit, the electronic chemical potential has begun to
reach negative values, see Table 6.

In order to get an estimate of the convergence limit for
the LUMO levels of anions quoted in Table 6, a fit of the
LUMO levels against the order of the progression was
performed. The results are summarized in Figure 1. It may
be seen that, for n ) 12 in the even-tempered curve, one
can safely consider that the LUMO level of anions will go
to zero in the infinite basis set limit, as suggested by the
reviewers. This result is also consistent with a choice of A
) 0 for the electron affinity of negatively charged systems
that do not bind an extra electron.

In summary, the calculation of the electronic chemical
potential and related properties of anions in the gas phase
absolutely demands a thorough computational analysis in the
infinite basis set limit. Any calculation using the Pople basis
set even including polarization function may lead to the
spurious result that the electronic chemical potential of anions
may become a positive number. Our results suggest that the
minimum level of theory must at least include the aug-cc-
PVQZ basis set together with an even tempered calculation
as the one described here for n ) 3.

The present results strongly suggest that, for anions, the
value A ) 0 is a reasonable approach for the electron affinity
of anions. With this result at hand, the electronic chemical
potential of anions in the gas phase would approach the limit
µ ) - I/2 ≈ εH/2. This result is reasonable if we consider
that anions in the gas phase are more likely expected to

behave as electron donors (nucleophiles), and in this sense,
the intrinsic nucleophilicity of charged electron donors
appears related to the ionization potential, as suggested by
one of us.30,31

Concluding Remarks

We have demonstrated herein that the occurrence of positive
values of the electronic chemical potential for anions in the
gas phase is a possible outcome in ab initio calculations that
use the Pople basis set, even including polarization functions.
A thorough computational analysis shows that this result may
be spurious if the convergence of the LUMO level is not
completed. The results obtained here strongly suggest that a
reasonable approach for the electron affinity of singly charged
electron donors is A ) 0. This choice is consistent with a
model of nucleophilicity in the gas phase which may be
simply related to the first ionization potential.
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Elsevier: New York, 2007; Vol. 19, pp 139-201.

(4) Chermette, H. J. Comput. Chem. 1999, 20, 129–154.

(5) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. ReV.
2003, 103, 1793–1874.

(6) Fuentealba, P.; Contreras, R. The Fukui Function in Chemistry.
In ReViews in Modern Quantum Chemistry: A Celebration
of the Contributions of Robert Parr; Sen, K. D., Ed.; World
Scientific: Singapore, 2002; pp 1013-1052.

(7) Vessecchi, R.; Crotti, A. E. M.; Guaratani, T.; Colepicolo,
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Abstract: Density functionals fail to provide a consistent description of weak intra- (i.e., short-
range) and inter- (i.e., long-range) molecular interactions arising from nonoverlapping electron
densities. An efficient way to correct the long-range errors is to add an empirical atom pair wise
interaction-correction, inspired by the Lennard-Jones potential (R-6 dependence). We show that
the universal damping function of Tang and Toennies (TT) that includes higher-order correction
terms (R-8 and R-10 dependent) reduces the intramolecular errors more efficiently, without altering
the long-range correction. For general applicability, the TT damping function is augmented by
a Fermi damping to prevent corrections at covalent distances. The performance of the new
dD10 correction was tested in combination with three nonempirical GGAs (PBE, PBEsol, RGE2)
on 64 illustrative reaction energies featuring both intra- and intermolecular interactions. With
only two empirical parameters, PBE-dD10 outperforms the computationally more demanding
and most recent functionals such as M06-2X or B2PLYP-D (MAD ) 3.78 and 1.95 kcal mol-1,
respectively). At the cc-pVTZ level, PBE-dD10 (MAD ) 1.24 kcal mol-1) considerably reduces
common DFT errors successfully balancing intra- (short-range) and inter- (long-range) molecular
interactions. While REG2-dD10 performs closely to PBE-dD10 (MAD ) 1.48 kcal mol-1), the
overall MAD of PBEsol-dD10 is again slightly higher (MAD ) 1.76 kcal mol-1).

Introduction

This work proposes a simple and efficient, a posteriori,
double-damped attractive weak interaction energy correction
formula for the nonempirical generalized gradient approxima-
tions1-6 (GGAs) of the Kohn-Sham density functional
theory (DFT).7 GGA functionals might provide a reasonable
description of the weak interactions arising from nonbonded
density overlap but cannot describe the long-range part of
the van der Waals (vdW) interaction that acts between
nonoverlapped densities. As proposed earlier,8-14 a properly
constructed damped attractive correction summed over all

atom pairs in the system efficiently remedies this deficiency
of GGA12-14 (and also the hybrid GGA and meta-GGA)
functionals at a negligible computational cost. Such a
correction must be convergent with respect to the internuclear
separation, Rij and must properly follow the ∼R-6 decay of
the dispersion interaction at large Rij. At shorter internuclear
separations the ∼R-8 and ∼R-10 terms might also have non-
negligible contribution to the interaction energy. In this paper,
we further develop the idea of a general interatomic-corrected
GGA functional as suggested by Grimme13,14 and show the
benefits of using a double-damping as well as higher order
dispersion terms for such corrections. In our formulation,
the inter- and intramolecular dispersion corrections are treated
jointly in a single formula as opposed to two separate
parametrizations (i.e., PBE-inter or PBE-intra)15,16 containing
only ∼R-6 terms.
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Inter- and intramolecular van der Waals interactions are
responsible for many energetic and structural phenomena
such as the heats of sublimation of hydrocarbons, the crystal
packing of organic molecules, host-guest chemistry, the
orientation of molecules on surfaces, the stacking of nucleic
acids in DNA,17 and protein folding18 as well as the
properties of polar and apolar solvents.

It is known that the Hartree-Fock (HF) method cannot
describe these weak interactions, arising from a pure electron
correlation effect. High level, expensive treatment of electron
correlation coupled with large basis sets (typically CCSD(T)/
aug-cc-pVQZ) are required to evaluate such interactions
accurately.19-22 Alternatively, less expensive and somewhat
less accurate estimation of weak interactions can be obtained
from MP2 complete basis set extrapolated results.23 These
methods are computationally very expensive and are ap-
plicable only to benchmark studies of small systems.

GGA, hybrid GGA, and meta-GGA are much less expen-
sive than CCSD(T) and MP2 methods. Such functionals can
at best provide an estimate of the bonding between weakly
overlapped densities but fail to reproduce the long-range part
of the vdW interaction, which tends to -C6/R6 as R f ∞.
The calculated GGA or meta-GGA interaction energies
arising from overlapping electron densities decays exponen-
tially,24 which results in a serious underestimation of the
long-range part of the interaction.25-29 A typical example
is the sandwich and T-shaped configurations of the benzene
dimer, which is dispersion-bound at the CCSD(T) level22

but essentially unbound in a PBE GGA computation.24 For
shorter-range weak interactions characteristic in rare-gas
dimers24,30-35 and other noncovalently bound diatomics,36-40

the performance of GGA,24,30,33,35-40 hybrid GGA,31,34 and
TPSS or TPSSh meta-GGA24,32 functionals varies. While
the B88 GGA41 exchange functional tends to underbind (or
not bind at all),24,42,43 LSDA seriously overbinds.24,32 In
contrast, PBE and TPSS often give reasonable binding
energies.24,30-32,35 The partial success of PBE and TPSS was
attributed predominantly to the large gradient behavior
(satisfaction of the Lieb-Oxford bound lower bound on the
exchange-correlation energy for all possible electron densi-
ties).24 In some rare-gas diatomics, however, the PBE, TPSS,
and TPSSh density functionals overcorrect the serious
overbinding tendency of LSD24,32 resulting in too-long bond
lengths and reduced binding energies. This deficiency
suggests the need for some attractive shorter-range correction.
In other words, a consistent description of the weak attractive
interactions by a GGA or meta-GGA requires a full treatment
of the long-range behavior25,44,45 along with an improved
treatment of the shorter-range part. These results also show
that including rare gas diatomics (short-range interactions)
into the DFT training sets for empirically fitted density
functionals does not guarantee an improvement for larger
stacking complexes (long-range interactions) of chemical or
biological interest.

Fully nonlocal functionals25,44,45 or generalizations of the
random phase approximation29 that capture the long-range
correlation effects are more promising and also computa-
tionally more demanding for the description of the dispersion
effects. Further possibilities are the following: the optimized

potential method within KS perturbation theory,46,47 empiri-
cally calibrating dispersion corrected atom centered potent-
ials,48,49 or fitting the exchange correlation enhancement
function (using large number of empirical parameters) to a
data set that contains weakly bonded compounds.50 Although
the resulting M06-2X hybrid meta-GGA functional shows
good overall performance for treating weak interactions, its
highly fitted nature does not guarantee the correct asymptotic
behavior and leads to failures.51 Similarly, the so-called
double hybrid functionals52 (which scale roughly as MP2)
not only are partially successful but also need a long-range
attractive correction for a more general description of weak
interactions.53

Computational Methods

An efficient solution to improve the performance of density
functionals for weak interactions is to add a damped attractive
long-range dispersion energy correction12-14 to the GGA,
hybrid GGA, or meta-GGA energy

The summation is over all atom pairs (ij) in the N atomic
system, and the d(Rij) attractive function is properly damped
at short internuclear separations Rij. We suggest the following
double-damped formula for d(Rij)

where

In eq 2, Fd(a,Rij) is a Fermi damping function12 given in eq
3, that is used to switch off the first damping (i.e., f2n(bRij))
at short internuclear separation. f2n(bRij) are damping func-
tions specific to a given dispersion coefficient (vide infra),
a and b are empirical damping parameters, and the C2n

ij are
the dispersion coefficients.

The steepness factor in eq 3 (i.e., 46) was chosen such as
to minimize the effect of the Fermi function on the damping
function f2n(bRij) at larger internuclear separations by impos-
ing Fd(a,1.1 ·a ·RVdw) g 0.99 (for details see the Supporting
Information). Rij

VdWis the vdW distance of the atom pair, and
a is the parameter that scales the vdW radii to improve the
flexibility in the parametrization scheme.54 The summation
in eq 2 goes up to 5 to include damped C6, C8, and C10 terms
leading to the resulting dD6, dD8, and dD10 formulas (the
latter contains all terms up to C10). The f2n damping functions
are used in the following form

Edisp ) -∑
i)2

N

∑
j)1

i-1

d(Rij) (1)

d(Rij) ) Fd(a, Rij) ∑
n)3

5

f2n(bRij)
C2n

ij

Rij
2n

(2)

Fd(a, Rij) )
1

1 + exp(-46( Rij

aRij
VdW

- 1))
(3)

f2n(x) ) 1 - exp(-x) ∑
k)0

2n
xk

k!
(4)

Inter- and Intramolecular Dispersion Correction J. Chem. Theory Comput., Vol. 5, No. 11, 2009 2951



where x ) bRij, with b being the damping (due to overlapping
densities) parameter.55 These general damping function terms
were proposed by Tang and Toennies55 (TT), and it was
successfully used for dispersion interaction of several noble-
gas and metal atom pairs.55-57 In the original TT model,
the long-range attractive potential, which is calculated from
the damped dispersion series, is added to a short-range purely
repulsive BornsMayer potential with b being the range
parameter. The importance of the C8 and C10 terms is
emphasized in ref 58. As DFT is able to treat short-range
correlation accurately, regions of strongly overlapping densi-
ties do not need to be corrected, which justifies the use of
the second damping (Fermi) function. The hybridization state
dependent12 C6 dispersion coefficients are averaged and
combined according to the rule proposed by Grimme:13 C6

ij

) 2(C6
i C6

j )/(C6
i + C6

j ). Other atomic coefficients14 or com-
bination rules14,59 give similar but slightly less consistent
results after refitting. C8 and C10 coefficients were estimated
based on the average C6 dispersion coefficients and empirical
rules as established in refs 60 and 61: i.e. C8/C6 ) 45.9 and
C6C10/C8

2 ) 1.21 (in atomic units). An alternative that is
going to be investigated in a subsequent study would be to
use Becke-Johnson exchange-dipole model.62-65

Bondi’s66 vdW radii were used and combined according
to a “cubic mean” combination rule put forward by Halgren:
59 Rij

VdW ) (Ri,VdW
3 + Rj,VdW

3 )/(Ri,VdW
2 + Rj,VdW

2 ).
The motivation for the use of a damped dispersion series

along with a Fermi formula such as in eq 2 is the removal
of the systematic errors for the treatments of short-range
weak interactions, while preserving good performance for
more typical long-range vdW interactions. Recently, several
studies pointed to large errors in the description of the
nonbonded intramolecular interaction in alkanes.67-71 Corm-
inboeuf et al.16 showed that the atom pairwise correction
containing only ∼R-6 terms and optimized for reproducing
intermolecular energies (PBE-inter, vide infra)15 only slightly
improve the description of intramolecular interactions. In
contrast, the reparametrized PBE-intra (i.e., parametrized for
intramolecular interactions) performs considerably better for
isodesmic (i.e., the number of formal bond types is con-
served) bond separation equation (BSE) reaction energies72,73

of hydrocarbons but seriously overbinds the T-shaped
benzene dimer. While the PBE-inter T-shaped dimer dis-
sociation curve is considerably better than that of the PBE-
intra, it has a much higher curvature than the corresponding
CCSD(T) curve (vide infra). The correction formula sug-
gested in eq 2 should preserve the description of both
interactions.

The two empirical parameters, a and b, contained in eq 2
are obtained from two prototypes of reaction energies that
are the Pople’s isodesmic bond energy separation reaction
of propane (eq 5 with m ) 1) and the hydrogenation reaction
of [2.2]paracyclophane to p-xylene (6)

Correcting (5) accounts for the intramolecular (short-range)
error. Note that the bond lengths do not change considerably
along reaction (5). The reaction is therefore not suited for
determining the value of the parameter a that describes the

distance where to switch off the correction. On the other
hand, obtaining an accurate energy for the challenging
hydrogenation reaction of [2.2]paracyclophane to p-xylene
(6)53,74 necessitates a correct description of the long-range
interactions between the two benzene rings of paracyclophane
as well as the reaction energy for converting a H-H and
two C-C bonds into two C-H bonds

The first-principle GGA functionals are very efficient
computationally and provide reasonable results for a wide
range of problems (molecular geometry, vibration, reaction
energies, lattice constants, bulk moduli, cohesive energies,
surface energies). Several nonempirical functionals that use
the PBE form were selected for this study. PBE itself is
generally used in chemistry and physics. Its failure to
improve the solid lattice constants, bulk moduli, and surface
energies upon LSDA motivated the development of the
recent PBEsol first-principles GGA functional that is based
on the exact second-order gradient expansion of the exchange
energy (the PBE functional is also a first principles GGA
functional that satisfies other exact constraints as second-
order gradient expansion for correlation and LSD-like linear
density response of a uniform electron gas). PBEsol gives
not only excellent lattice constants and surface energies but
also poorer atomization energies than PBE. An attempt to
develop a simple GGA that unites the good properties of
PBE and PBEsol led to the second regularized gradient
expansion (RGE2). For further details the interested readers
turn to refs 3, 4, and 6.

Because of the different energy range of the two prototype
reactions (2.8 kcal mol-1 for the propane BSE and -58.5
kcal mol-1 for the hydrogenation of [2.2]paracyclophane),
a straightforward least-squares minimization of the combined
error is not suited. The error criterion for the hydrogenation
reaction was therefore chosen to be 2 kcal mol-1 (“chemical
accuracy”). From all combinations fulfilling this requirement,
the one with the lowest error for the propane BSE was
selected. Parameter a is 1.45 for all functionals. b is 0.88,
1.03, and 1.00 for PBEsol, PBE, and RGE2, respectively.

Figure 1 shows the Rij dependence of the dD10 formula
of eq 2 using the a and b parameters obtained for PBE vs
C...C internuclear separation. The dD10 correction balances
between the inter- (i.e., long-range) and intra- (short-range)
molecular corrections. Figure 1 also demonstrates that
obtaining good BSE energies requires a correction up to
relatively short 4.5 au internuclear separations. At short
distances the correction coming from PBE-inter vanishes and
is absolutely ineffective. On the other hand, PBE-intra is
steeper and larger in magnitude as compared to PBE-dD10
resulting in inaccurate energies for intermolecular interac-
tions. The double-damped dispersion series with up to C10
terms (i.e dD10) easily resolves this dilemma. For compari-
son, D10, which is a correction free of the Fermi damping
function (that “turns off” the correction at covalent bond
distance), is given as well.

CH3(CH2)mCH3 + mCH4 f (m + 1)C2H6 (5)
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The performance of the dD10 attractive correction is tested
on five test sets. Three of the sets assess Pople’s isodesmic
bond energy separation reaction (BSE, eq 5) of saturated
hydrocarbons (chains, rings, and cages in H, R, and C sets,
respectively, Figure 2).16 The fourth set that reflects “in-
tramolecular dispersion interactions in hydrocarbons”
(IDHC)53 contains two isomerization reactions, two folding
reactions of large hydrocarbon chains, the dimerization of
anthracene, and the hydrogenation reaction of [2.2]paracy-
clophane (for details on the test sets see Table S6-S10 in
the Supporting Information). The fifth set corresponds to the
common benchmark for noncovalent complexes (S22)75 and
includes the benzene dimers.

Geometries of the H, R, and C sets were optimized at the
B3LYP/6-311+G** level using Gaussian 03.76 Zero points
and thermal corrections to the enthalpy are taken from these
calculations. Experimental heats of formation (NIST)77 at

298 K are used as reference. Geometries and reference values
for the IDHC-set were taken from ref 53. Our results are
compared to LSDA (SWVN5),78,79 TPSS,80 M06-2X,81

B3LYP,82,83 B97-D,14 B2PLYP,52 and B2PLYP-D.53 Ben-
zene dimers were derived from the equilibrium structures
of ref 22 and the monomers84 kept frozen. The geometries
and reference values (CCSD(T)/CBS) for the S22 set were
obtained from the BEGDB database.85

Given the size of the molecules in our test sets, the cc-
pVTZ basis set was chosen for the single point energy
computations. This basis set contains small exponent func-
tions and gives only a small artificial binding error for weakly
bond complexes.54 The energy differences between the cc-
pVTZ and the aug-cc-pVTZ basis set computed with the PBE
GGA are 0.006 kcal mol-1 (0.4%) for the propane BSE (eq
5), 2 kcal mol-1 (2.8%) for the hydrogenation reaction energy
of [2.2]paracyclophane to p-xylene (eq 6), and 0.25 kcal
mol-1 for the n-octane isomerization problem (vide infra).
This latter difference is negligible compared to the 7.6 kcal
mol-1 error with respect to the experimental energy for
octane isomerization. The cc-pVTZ basis set performs
considerably better than the diffuse 6-311+G(2d,2p) basis
set used earlier86 for the octane isomerization. The 0.26 kcal
mol-1 difference between the PBE/cc-pVTZ and PBE/aug-
cc-pVTZ energies for the anthracene dimer dissociation
energy is also negligible compared to the 23.6 kcal mol-1

error of the PBE (the reaction energy is 14.6 kcal mol-1 with
the cc-pVTZ basis set) against the best experimental estimate
(-9 kcal mol-1 in ref 87). Note that the S22 test set contains
several hydrogen bonded complexes for which a larger basis
set is required to reach convergence.88 For this set, computa-
tions at the aug-cc-pVTZ level are also provided and
discussed.

A modified version of deMon-2K 2.389 was used for all
computations with the new correction. B2PLYP computa-
tions were performed with Turbomole 5.1.90,91 M06-2X
calculations were performed with NWChem 5.192,93 using
the ‘xfine’ grid.

Results and Discussion

Figure 3 and Table 1 summarize the mean absolute deviation
(MAD) for the functionals tested. Detailed performance,
including PBEsol-dD10 and RGE2-dD10, can be found in
the Supporting Information. The proposed dD10 attractive
correction reduces the errors of PBE drastically (MAD for
chains/cages of 8.0/22.5 and 1.0/1.7 kcal mol-1 for PBE and
PBE-dD10, respectively). Only the dD10 correction reduces
the systematic increase in MAD going from chains to rings
to cages. Similar improvements are obtained while correcting
PBEsol and RGE2.

Remarkably, for the subtle intramolecular interactions,
Perdew’s “Jacobs-ladder”94 is reversed! Ascending toward
more sophisticated (and expectedly more robust95) function-
als corresponds to a significant increase in error (e.g., MAD
over alkane chains increases from 0.8, to 8.0 and 10.3 kcal
mol-1 for LSDA, PBE, and TPSS, respectively). PBEsol
(constructed to recover the exact second order gradient
expansion for the exchange energy at the sacrifice of accuracy
for atoms96) shows the best uncorrected performance. This

Figure 1. Dispersion energy correction curve for C...C
dispersion interaction vs the C...C distance. Parameters of
eq 2 are a ) 1.45 PBE-dD10: b ) 1.03; PBEsol-dD10: b )
0.88; RGE2-dD10: b ) 1.00. For PBE-D10 without Fermi
damping b ) 1.0001.

Figure 2. Schematic representation of the 36 saturated
hydrocarbons in the H, C, and R sets.
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is best understood recalling that PBEsol exchange enhance-
ment function Fx(s) does not correct LSDA as much as the
PBE functional for wide range of the reduced gradient, s,
and that LSDA performs well for these reactions. Note also
that the combination of the PBEsol exchange with PBE
correlation gives lower MAD than the PBE functional (Figure
3). This result demonstrates that the origin of the improve-
ment arises from the modified PBEsol exchange.4 RGE2 is
also designed to recover the second-order gradient expansion
for exchange over a wide range of s (typically important for
correct description of solids), but it is more similar to PBE
in the large density gradient region (important for free atoms)
than to PBEsol. While RGE2 is built to be more satisfying
from the point of view of general applicability, it performs
only slightly better than PBE for the reactions tested.

However, PBE-dD10 slightly outperforms RGE2-dD10 and
gives the best overall results. Interestingly, the overall
performance of the double hybrid B2PLYP is less satisfac-
torily unless an attractive correction is added. Similarly, the
empirical M06-2X meta GGA results are better than those
of all the noncorrected GGA but still far from the PBE-dD10
for the test sets investigated herein. The relevance of the
double-damping, that is the necessity of switching off the
D10 correction at short internuclear separations (<4.5 au for
carbon), is illustrated by the significantly larger total MAD
(2.14 kcal mol-1 vs 1.24 kcal mol-1) obtained with the singly
damped D10 correction to PBE (i.e., PBE-D10 in Figure 3).
The correction discussed in this paper works well also in
the D6 form as shown by the results obtained with the
damped dispersion series including the C6 terms only (Table
1). PBE-D6 performs better than PBE-D10 for the alkanes
series but has a significantly larger MAD for both the IDHC
and S22 sets (mean error larger by 1.25 and 0.69 kcal mol-1,
respectively). While PBE-dD10 is best overall, excellent
results are obtained with the simpler PBE-dD6 correction.
For the H, R, C and S22 test sets, the performance of PBE-
dD6 is marginally better (by ∼0.1 kcal mol-1 on average)
than that of PBE-dD10, but the latter is better by 0.5 kcal
mol-1 for the IDHC test set. Since the dD6 curve mimics
the position and the depth of the minima of the dD10
correction curve, these results demonstrate that the small
difference between the two correction functions in the longer
distances does not influence the results considerably (see
Figure S1 in the Supporting Information).

Another illustrative example of common DFT errors is
the relative stability of isomers. As shown in Table 2, the
errors in the alkane isomerization energies also suffer
dramatically from the systematic GGA error. Apart from
LDA and M06-2X, none of the (uncorrected) density
functional gives an acceptable correlation with respect to the
experimental heat of formations.77 In contrast, the three
empirically corrected functionals, B97-D, PBE-dD10, and

Figure 3. Mean absolute deviations for bond separation energies over hydrocarbon chains (H set), rings (R set), and cages (C
set); for reaction energies of the test set “intramolecular dispersion in hydrocarbons” (IDHC) and the common benchmark for
noncovalent complexes (S22) using the cc-pVTZ basis set.

Table 1. MAD (in kcal mol-1) Comparison for All
Functionals Testedb

H R C IDHC S22
weighted
average

B3LYP 9.73 11.60 25.99 16.45 3.20 9.85
TPSS 10.33 11.64 25.67 14.66 3.01 9.75
PBE 7.99 9.59 22.52 12.52 2.24 (2.55) 7.97 (8.08)
RGE2 8.27 8.52 19.14 12.41 2.97 (3.51) 7.75 (7.93)
B2PLYP 6.05 7.02 14.41 9.19 1.41 (1.20)a 5.64 (5.57)
PBEsol 5.16 6.68 15.41 6.10 2.09 (1.89) 5.37 (5.31)
PBEsol-PBE 5.40 6.31 14.20 6.19 2.21 5.29
PBEsol-D6 2.48 3.06 9.06 9.09 3.24 (2.56) 4.02 (3.79)
M06-2X 3.60 6.02 13.45 2.23 0.51 3.78
SVWN5 0.78 3.97 10.21 2.01 2.85 3.14
B97-D 2.06 3.37 7.59 3.48 0.52 (0.36) 2.42 (2.37)
PBE-D10 2.50 2.59 4.84 1.69 1.06 (0.48) 2.14 (1.94)
B2PLYP-D 1.60 2.82 4.66 1.60 1.02 (0.44)a 1.95(1.75)
RGE2-D10 2.78 1.60 2.49 3.30 1.06 (0.90) 1.92 (1.86)
PBEsol-D10 0.42 0.98 2.29 5.76 2.40 (1.72) 1.89 (1.65)
PBEsol-dD10 1.32 1.92 3.21 2.27 1.48 (0.92) 1.76 (1.57)
PBE-dD6 1.16 1.76 2.67 2.34 1.43 (0.95) 1.63 (1.47)
RGE2-dD10 2.02 1.21 1.70 2.53 0.97 (0.89) 1.48 (1.45)
PBE-D6 0.31 1.05 2.19 2.94 1.90 (1.17) 1.44 (1.18)
PBE-dD10 1.01 1.33 1.69 1.50 1.16 (0.45) 1.24 (1.00)
PBE-dD6 0.82 1.17 1.58 2.01 0.95 (0.55) 1.12 (0.99)

a The B2PLYP(-D) number in parentheses refer to non-
counterpoise corrected energies taken from ref 53 for an optimized
value of s ) 0.35. b Values in parentheses refers to aug-cc-pVTZ
computations for the S22 test set.

2954 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Steinmann et al.



in particular B2PLYP-D, lead to a considerable improvement
and describe the more compact structures (e.g., H3, H11,
H12) as reasonably more stable (>2 kcal mol-1) than their
linear counterparts (e.g., H5, H6).

The benzene dimers serve as prototypical examples for
evaluating the detailed performance of the dD10 correction
on typical intermolecular interactions (Figure 4). For the
stacked dimer, the equilibrium distance at the PBE-dD10
level is the same as with the CCSD(T) reference curve, but
the dissociation energy is overestimated (by 0.59 kcal mol-1,
35%). A more detailed analysis (Figure S2 in the Supporting
Information) shows that the PBEsol-dD10 potential energy
curve agrees better (-0.06 kcal mol-1 difference at the

minimum) with the CCSD(T) curve above the equilibrium
distances (3.9 Å), but it is, like the PBE-dD10 curve,
somewhat too attractive below that distance. For the T-shaped
dimer, the dD10 correction leads to a considerable improve-
ment as compared to the intramolecular alternative (i.e., PBE-
intra). Both PBE-dD10 and PBEsol-dD10 give slightly larger
dissociation energies than CCSD(T) (by 0.35 kcal mol-1,
13% and 0.27 kcal mol-1, 10% respectively) but match the
curvature of the reference potential better than that of the
correction parametrized for intermolecular interactions
(PBE-inter).15,16 The PBE-inter curve indeed exhibits a
sudden repulsive change below 5 Å (Figure 4 lower curve).
The RGE2-dD10 potential curve is too repulsive at short
distances and too attractive above 4.5 and 5.9 Å for both
the stacked and T-shaped dimers, respectively. For the
benzene dimers as well as the full S22 set, the agreement
between PBE-dD10 and CCSD(T)/CBS can be considerably
improved by using the larger aug-cc-pVTZ basis set (vide
infra).

The results on the full S22 set confirm the good overall
performance of dD10 on common weakly bound complexes.
Unlike the DFT-D methods, which use the S22 test set to
obtain parameters for the dispersion correction,14,53 the S22
test set was not used in the parametrization of PBE-
dD10.With a MAD of 0.45 kcal mol-1 using the aug-cc-
pVTZ basis set (Table 1), PBE-d10 gives binding energies
comparable to those obtained with B2PLYP-D/aug-cc-pVTZ
(0.44 kcal mol-1) given in ref 53 and B97-D/aug-cc-pVTZ
(0.36 kcal mol-1). Note that counterpoise corrected results
for B2PLYP-D can be better (MAD ) 0.25 kcal mol-1).53

However, such counterpoise corrections are not straightfor-
ward for intramolecular situations and can be expensive.
They have not been applied here.

The general applicability of the PBE-dD10 correction is
further illustrated by the assessment of two challenging
reaction energies: the dimerization reaction of anthracene
(Figure 5) and the isomerization reaction of n-octane into
tetramethylbutane. The anthracene dimer is connected by two
covalent C-C bonds resulting from a [4 + 4] cycloaddition
reaction. The conversion of C-C π double bonds into two
C-C σ bonds upon dimerization results in considerable
change in the energetic properties. Similar large energy
difference can be observed between protobranched n-octane
and the highly branched tetrametylbutane.

PBE-dD10 performs once again nearly perfectly for both
these difficult cases (Figure 6), while none of the other
functionals are fully satisfactory. PBE-dD10 also leads
to very accurate results for the IDHC set in general (MAD
1.5 kcal mol-1, Figure 3, Tables S6-S10 in the Supporting
Information) outperforming the other methods tested. For

Table 2. Computed Relative Enthalpies (ZPE and Thermal
Corrected to 298 K, in kcal mol-1) for Selected Alkanes
Isomerization Reactions in the H and R Sets97

H3fH5 H11fH6 H12fH6 R5fR6 MAD

Expa 4.39 4.07 3.28 1.12
B3LYP -0.26 -2.56 -2.62 -1.07 4.84
PBE 0.28 -1.48 -1.74 -0.93 4.18
PBEsol 1.34 -0.04 -0.65 -0.34 3.14
B2PLYP 1.67 0.75 0.09 -0.33 2.67
M06-2X 3.03 2.64 1.58 0.69 1.23
B97-D 3.19 3.23 2.22 0.63 0.90
PBE-dD10 3.26 3.34 2.14 0.54 0.90
B2PLYP-D 3.51 3.52 2.29 0.73 0.70
SVWN5 3.69 3.88 2.63 0.43 0.56

a Reference 77.

Figure 4. Stacked (upper) and T-shaped (lower) benzene
dimer interaction energies against the center of mass distance
(COM). CCSD(T) reference curve taken from ref 22, PBE-
inter and PBE-intra from ref 16.

Figure 5. The anthracene dimer.
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these two reactions and the IDHC set in general, the singly
damped PBE-D10 performs almost as well as PBE-dD10.

Overall, PBE-dD10 gives the most robust results and
the lowest MAD for a series of prototypical and chal-
lenging reaction and binding energies. With a total MAD
of only 1.00 kcal mol-1 for the five sets of Figure 3, PBE-
dD10 outperforms both uncorrected and corrected func-
tionals. For the S22 test set, the aug-cc-pVTZ basis set is
necessary to obtain converged results. The smaller cc-
pVTZ basis set gives converged energies for the other
test sets. The success of the correction is attributed to the
inclusion of an adequate damping function. In addition,
the necessity of switching off the correction at short
internuclear separations (<4.5 au for carbon), is illustrated
by a 1 kcal mol-1 higher total MAD (1.94 kcal mol-1)
obtained with the singly damped D10 correction to PBE
(Figure 3). Note that our preliminary benchmarks on
additional properties such as molecular thermochemistry,
reaction barriers, and equilibrium geometries show that
the sdD corrections do not worsen the results of the parent
GGAs (Tables S23-S26 in the Supporting Information).
GGAs show poor performance for reaction barriers and
atomization energies.98 B2LYP(-D) and M06-2X obvi-
ously perform much better for these. However, poor
atomization energy does not lead to poor thermochemistry
as exemplified by the good performance of PBE for
thermochemistry99,100 (Table S26). Equilibrium geometries
obtained for a test set of covalent bond lengths and angles
(Table S25) also show that the dD10 correction barely
affects the geometrical parameters.

Conclusions

We have presented a unified empirical correction formula
for first principle GGA functionals. The Lennard-Jones
potential R-6 dependence is augmented with higher-order
correction terms (R-8 and R-10 dependent) through the

use of the universal damping function of Tang and
Toennies.55 For general applicability, a second damping
function is employed to turn off the correction at short
distances. Among the three first-principal GGA tested
(PBE, PBEsol, and RGE2), PBE-dD10 give the most
robust results, closely followed by PBE-dD6 and RGE2-
dD10. With only two empirical parameters and one
prefactor, PBE-dD10 outperforms the computationally
more demanding B2PLYP-(D) and the most recent func-
tionals such as M06-2X, which contain more empirical
parameters. PBE-dD10 considerably reduces common DFT
errors for a set of 64 illustrative reaction energies,
successfully balancing intra- (short-range) and inter- (long-
range) molecular interactions. The corrections introduced
here do not deteriorate the performance for equilibrium
geometries, atomization energies, and reaction barriers.
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Abstract: The kinetics and thermodynamics of copper-mediated nitrene insertion into C-H
and H-H bonds (the former of methane) have been studied using several levels of theory:
B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-pVTZ, and ccCA (correlation consistent
Composite Approach). The results show no significant difference among the DFT methods. All
three DFT methods predict the ground state of the copper-nitrene model complex, L′Cu(NH),
to be a triplet, while single reference ccCA predicts the singlet to be the ground state. The
contributions to the total ccCA energy indicate that the singlet state is favored at the MP2/CBS
level of theory, while electron correlation beyond this level (CCSD(T)) favors a triplet state,
resulting in a close energetic balance between the two states. A multireference ccCA method
is applied to the nitrene active species and supports the assignment of a singlet ground state.
In general, the largest difference in the model reaction cycles between DFT and ccCA methods
is for processes involving radicals and bond dissociation.

Introduction

Carbon-hydrogen bond activation and functionalization
are among the most heavily researched endeavors in
catalysis, given their importance in the production of
useful products from natural gas and petroleum. Develop-
ment of catalysts for functionalization of carbon-hydrogen
bonds (particularly for unactivated aliphatics and aromat-
ics) has been actively pursued by experimentalists and
theorists attempting to identify better catalysts.1-6 Ca-
talysis of such reactions by late transition metal (TM)
complexes has received much recent attention due to their
lower electrophilicity and thus greater heteroatom toler-
ance (versus comparable early TM complexes).7 Moreover,
such metals are relatively inexpensive in relation to the
noble metals.

Phosphines (PR3) have long been the ligand of choice for
many middle-late TM catalysts.8-14 Notable experimental

work on late 3d TM multiply bonded complexes supported
by bis-phosphine ligation has been done by the Hillhouse
group, who have demonstrated group transfer to a variety
of substrates (e.g., olefins and CO) using nickel-nitrene,
-carbene, and -phosphinidene complexes.8-14 Ligands in
the �-diketiminate family have started to augment phosphines
in the study of late TM catalysis.15 Attention has also focused
on �-diketiminate and related ligands because of their ability
to enforce low metal coordination numbers. Also, varying
the substituents on the ligating nitrogens, the backbone
carbons, linking the �-diketiminate ring with other moieties
to form fused rings, and so forth gives these ligands tunable
electronic and steric features.15 For example, varying
�-diketiminate substituents has been shown by Shimokawa
et al. to produce different coordination geometries (i.e.,
tetrahedral, distorted tetrahedral, and square planar), different
electronic spectra, and electrochemical responses for a series
of copper complexes.16 In a review on �-diketiminates,15

these ligands are seen to bind strongly to a diverse assortment* Corresponding author e-mail: t@unt.edu.
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of metals in a wide range of bonding modes and stabilize
lower than typical metal oxidation states (e.g., Fe(I), Co(I)
or Ni(I)).

These features have led to many notable examples of
transition metal �-diketiminate complexes of the late 3d
metals: Fe, Co, Ni, and Cu. For example, a recent report by
Holland et al.17 investigated the metastable iron(III)-imido
complexes that effect hydrogen atom abstraction (HAA) of
1,4-cyclohexadiene. The imido complex becomes active only
after the addition of a fourth ligand, 4-tert-butyl-pyridine.
Coordination of the fourth ligand to iron is postulatedsvia
a combination of experimental Mossbauer spectroscopy and
DFT calculationssto induce a “flip” from a lower to a high
spin state.17 The synthesis and X-ray crystal structure
characterization of a �-diketiminato Co(I) arene adduct and
its reactivity with dioxygen and organoazides has been
reported by Warren et al.18 A terminal imido Ni(III) complex,
also reported by Warren and co-workers, has been shown to
effect C-H bond activation.19

Among late TMs, the coinage metals Cu, Ag, and Au have
been extensively studied for catalytic nitrene transfer.20-26

For example, Dias et al. have reported Cu(I) and Ag(I)
scorpionate complexes as carbene and nitrene transfer
catalysts.24 A silver-catalyzed amination of saturated C-H
bonds (including relatively inert Csp3-H bonds of cycloal-
kanes) has also been reported by He et al.22 A disilver
structure has been identified by the He group as critical in
silver-based nitrene transfer.22 He and co-workers also
reported C-H bond activation at room temperature using
gold-catalyzed nitrene insertion.23 They found that, for C-H
bond activation, a nearby aromatic C-H bond is needed,
presumably to “direct” the activation/insertion event.
Copper-scorpionate catalysts (i.e., TpBr3Cu(NCMe)) have
been reported by Perez and co-workers to aminate C-H
bonds.21 The complex TpBr3Cu(NCMe) catalyzes the ami-
nation of C-H bonds of cyclohexane and benzene and the
primary C-H bond of toluene and mesitylene methyl groups
using iodonium imide (PhIdNT) as a nitrene transfer
reagent.21

Warren and Badiei27 synthesized and structurally charac-
terized Cu-�-diketiminate-carbene complexes and con-
cluded from density functional theory (DFT) calculations that
there is significant π bonding between Cu and the C of the
CPh2 (i.e., carbene). The foregoing suggests the potential
for (meta)stable nitrene complexes of Cu. Warren et al.
reported that the reaction of N3Ar with {[Me3NN]Cu}2-
(toluene) produces a dicopper nitrene {[Me3NN]Cu}2(µ-
NAr). Evidence has been obtained that the latter gives rise
to a terminal Cu-nitrene through slow dissociation.28

Cundari et al. studied complexes of the form (�-diketimi-
nate)Cu(NPh) using DFT, complete active space self-
consistent-field (CASSCF), and hybrid quantum mechanical/
molecular mechanical (QM/MM) methods. CASSCF and
QM/MM calculations (the QM portion of the latter is of the
CASSCF variety) indicate an “open shell” singlet ground
state, contrary to prior DFT predictions.29 A singlet is
synthetically preferable, as this implies (and experimental
studies support this contention)30 that the copper nitrene will
thus undergo amination reactions via concerted C-H inser-

tion bonds rather than less selective radical reactions one
might expect from a triplet active species.29 Recent work
thus suggests that such complexes can provide a rational basis
for engineering novel C-H functionalization catalysts ca-
pable of activating even the strongest C-H bonds.29,30

Many computational studies of C-H activation, most
notably early research by Hoffmann and more recently by
Goddard et al., Cundari and co-workers, and Hall et al.31-38

have modeled the mechanisms of C-H activation. In this
work, first-principles modeling of nitrene insertion into C-H
and H-H bonds has been performed. Reactions of a
�-diketiminate-Cu-nitrene (i.e., L′Cu(NH); L′ is the parent
�-diketiminate anion, C3N2H5

-) with H2 and CH4 have been
performed in order to understand strong (BDEMesH ∼ 104
kcal mol-1) bond activation. Also, we seek to probe the
impact of changes to the level of theory beyond approaches
(i.e., B3LYP and Pople-style basis sets) now commonplace
in the literature. Hence, the kinetics and thermodynamics of
B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/cc-
pVTZ, and the correlation consistent Composite Approach
(ccCA)39-43 are compared. The aforementioned methods
have also been used to delineate the singlet (S ) 0) and triplet
(S ) 1) surfaces for these model catalytic reactions. A
multireference ccCA, reported by Wilson and co-workers,
is also used to study the nitrene active species.

Computational Methods

Geometry optimizations of all minima and transition states
were performed using the Gaussian 03 suite of programs.44

Unless otherwise specified, calculations were performed
using the B3LYP hybrid functional in conjunction with the
6-311++G(d,p) where (d,p) signifies addition of d- and
p-polarization functions to main group elements and hydro-
gen atoms, respectively.45 This basis set adds diffuse spd
and f polarization functions to copper. PBE1KCIS was used
in conjunction with the cc-pVTZ basis set.46-54 The
PBE1KCIS functional was found by Wilson and co-workers
to best predict enthalpies of formation for TM complexes
and therefore is utilized in this study to provide a base of
comparison with the more popular B3LYP functional.45,55-57

The B97-1 functional has the lowest mean absolute deviation
for calculated versus experimental enthalpies of formation
of 3d TM-containing molecules in a study by Wilson and
co-workers.57 Therefore, the B97-1 has also been used in
this research. Vibrational frequencies are calculated at all
DFT optimized stationary points to confirm them as minima
or transition states. Modeling of triplet species with density
functional theory employs unrestricted Kohn-Sham methods.

Previous work has shown that the mean absolute deviation
for energetics using ccCA is 0.89 kcal mol-1, which is within
“chemical accuracy” (i.e., (1 kcal mol-1).39-43 Hence, the
ccCA approach was employed in this study to compare with
results obtained from DFT methods. Classical activation
barriers as predicted by ccCA42 were in much better
agreement than G3B as compared to very high accuracy
computed values obtained from the Truhlar et al. databases.58

The ccCA composite method uses the correlation consis-
tent basis sets originally developed by Dunning et al.46 The
ccCA method has also been shown to achieve “transition
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metal accuracy” for the enthalpies of formation of a data set
of 17 3d TM complexes. It was suggested by DeYonker and
co-workers that “transition metal accuracy” for ∆Hf° is ca.
(3 kcal mol-1 due to the larger experimental uncertainty
inherent in the study of such species.41 The ccCA methodol-
ogy employed in this study is outlined by DeYonker et al.41

Briefly, the equilibrium geometry, frequency analysis, and
zero-point energy (scaled by 0.9890) were obtained at the
B3LYP/cc-pVTZ level of theory using the Gaussian 03
software package. Separate extrapolation of the HF and
correlation energy to the complete basis set (CBS) limit was
performed, because, as shown in prior work, the HF energy
converges more rapidly to the CBS limit than the correlation
energy.41 The HF/CBS energy and MP2/CBS correlation
energy were then combined to form the “reference energy.”
A series of contributions were then added to the reference
energy, E(MP2/CBS), to account for correlation energy
beyond the MP2 level of theory {estimated at the CCSD(T)/
cc-pVTZ level of theory, [∆E(CC)]}, core-valence effects
at the MP2 level of theory [∆E(CV)], and scalar relativistic
effects at the MP2 level of theory [∆E(SR)]. The zero-point
energy (ZPE) corrections were used to account for anhar-
monicity and were taken from the B3LYP/cc-pVTZ calcula-
tions. The ccCA energy is calculated as

The energies for methane functionalization reactions by
L′Cu(NMe), outlined in Scheme 1 (H2 activation and
functionalization by L′Cu(NH) are analogous) have been
calculated using DFT and ccCA methods. In an effort to
improve and quantify our understanding of the response of
TM reaction mechanismssthermodynamics and kineticssto
differing levels of theory (in particular, composite ab initio
methods), models of important reactions involved in strong
bond activation have been studied. Points of particular
interest in this research are to compare and contrast (a) the
popular B3LYP functional with newer PBE1KCIS and B97-1
functionals and (b) DFT versus ccCA techniques.

For the L′Cu(NH) active species, a singlet ground state
has been predicted by CASSCF; this is an open-shell singlet
that single reference methodologies such as DFT and ccCA
cannot fully characterize (note that pure functionals such a
BLYP and BP86 also predict a triplet ground state for the
nitrene complex). Therefore, it is of interest to also inves-

tigate this important entity with a multireference (MR)
equivalent of the ccCA. To create a MR-ccCA methodology,
Wilson and co-workers replaced the MP2 calculations within
the ccCA method with CASPT2 calculations and the
CCSD(T) calculation of the E(CC) term with an average
quadratic coupled cluster (AQCC) calculation. All multiref-
erence calculations were performed in the MOLPRO 2006.1
program package.59 This formalism has been utilized recently
by Mintz et al. to study the potential energy surfaces of C2

and N2 and resulted in good agreement for their reaction
coordinates, which are particularly multireference in the
vicinity of the dissociation asymptote.60 Due to the size of
the copper nitrene system and the computational demand of
the AQCC calculation, the active space chosen for all MR
calculations was four electrons in five orbitals. Previous
calculations by Dinescu et al. on copper-nitrene complexes
indicated that CASSCF active spaces of this size were
suitable for modeling the different low-energy electronic
states.29

Results and Discussion

The copper model catalyst, L′Cu, is a closed-shell system
with a singlet ground state as supported by DFT calculations
by Cundari et al.29 The substrates chosen were H2 and CH4

as models for the H-H and C-H bond activation, respec-
tively. The copper-nitrene active species, L′Cu(NH) or
L′Cu(NMe), were evaluated in both singlet and triplet spin
states. It is worth reiterating that CASSCF calculations of
copper-nitrene complexes indicated an “open-shell” singlet
ground state, contrary to prior DFT predictions.29

1. DFT Calculations. 1.1. Comparison of Different LeV-
els of Theory. Calculated reaction pathways for H-H and
C-H bond activation of methane by L′Cu(NH) are depicted
in Figure 1. The nitrene L′Cu(NH) can undergo [1 + 2]
insertion to lead directly to a metal-bound amine product
(i.e., L′CurNH2CH3), shown in Figure 2. Previous experi-
mental and computational research implicate a direct inser-
tion pathway.27,28 We also dissected the direct [1 + 2] path
into HAA of the substrate to produce an amide intermediate

Scheme 1

EccCA ) E(MP2/CBS) + ∆E(CC) + ∆E(CV) +
∆E(SR) + ZPE (1)

Figure 1. Reaction pathways of C-H bond activation of CH4

by L′Cu(NH). Pathways for H2 activation are analogous.
Enthalpy scale is arbitrary.
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L′Cu-NH2
• and a radical CH3

• (or H•), which may undergo
either (i) metal-carbon bond formation to form (pathway
3, Figure 2) the four-coordinate complex L′Cu(NH2)CH3

(Figure 2) or (ii) radical rebound to form L′CurNH2CH3

(Figure 2). The methyl(amide) intermediate L′Cu(NH2)CH3

can undergo reductive elimination to produce amine product
L′CurNH2CH3. Calculations show pathways similar to those
depicted in Figure 1.

There is no significant difference in optimized bond lengths
and bond angles for the species investigated (see Scheme 1
and Figure 2) among all three DFT methods evaluated.
Therefore, the optimized geometries for all stationary points
given in the figures are those determined at the B3LYP/6-
311++G(d,p) level. Figures 3 and 4 show the nitrene active
species and [1 + 2] insertion transition states (for the latter,
methane is the substrate) for singlet and triplet multiplicities.

As can be deduced from Table 1, calculated differences
among the energetics for the three DFT methods are minimal
for hybrid (B3LYP and B97-1) and hybrid meta-GGA
(PBE1KCIS) functionals, Pople and correlation consistent
basis sets. For H2 reactions, the largest calculated deviation
among DFT energetics is 5.9 kcal mol-1, the difference
between B3LYP/6-311++G(d,p) and PBE1KCIS/cc-pVTZ
enthalpies for reaction III in Scheme 1 on both the singlet
and triplet state surfaces. Reaction III is the microscopic
reverse of H-H bond activation by L′Cu(NH) to create
L′CurNH3.

For methane reactions, Scheme 1, the most significant
difference is 10.5 kcal mol-1 between PBE1KCIS/cc-pVTZ
and B97-1/cc-pVTZ for the calculation of the reaction

barrier height (i.e., R f TS) on the triplet surface. While
sensitivity of transition states and hence reaction barriers to
the level of theory is perhaps expected, what is more
surprising are the differences in the ground state energetics.

Figure 2. Optimized geometries of L′CurNH2CH3 (top) and
L′CuNH2(CH3) (bottom) using the B3LYP/6-311++G(d,p)
method. The pertinent bond lengths (Å) and bond angles (deg)
are shown.

Figure 3. Optimized geometries of the singlet (top) and triplet
(bottom), L′Cu(NH) using the B3LYP/6-311++G(d,p) method.
The pertinent bond lengths (Å) and bond angles (deg) are
shown.

Figure 4. Transition state for direct C-H insertion at the
B3LYP/6-311++G(d,p) level of theory. The top geometry is
the singlet (νi ) 861i cm-1), while the bottom geometry is the
triplet (νi ) 1643i cm-1). The pertinent bond lengths (Å) and
bond angles (deg) are shown.
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More specifically, there are cases where the absolute value
of the deviation among the three DFT methods is 10.4
(B3LYP/6-311++G(d,p) versus PBE1KCIS/cc-pVTZ) and
10.1 (B3LYP/6-311++G(d,p) vs B97-1/cc-pVTZ) kcal
mol-1 in the C-H bond activation reaction coordinates. Both
of these results are for reaction II in Scheme 1, which is the
binding enthalpy of methyl amine to the �-diketiminate-Cu
complex. The sensitivity of reaction II is noteworthy given
that it entails the coordination of a closed-shell Lewis base
(ammonia) to a closed-shell Lewis acid (L′Cu). The aVerage
difference as quantified by the mean absolute deViation
(MAD) among the three DFT methods is generally small
(1.6-5.4 kcal mol-1) with the exception of the reactions
mentioned aboVe. In section 2, we will compare ccCA
predicted energetics to those obtained with density functional
theory.

1.2. The Ground State of Copper Nitrene [L′Cu(NH)].
DFT calculations on L′Cu(NH), Figure 3, predict that the
triplet state is lower than the singlet state for all three levels
of theory evaluated here: B3LYP/6-311+G(d,p), PBE1KCIS/
cc-pVTZ, and B97-1/cc-pVTZ. The difference between the
triplet and singlet states is nearly identical for each functional,
13.4, 13.3, and 12.9 kcal mol-1, respectively, similar to DFT
values reported previously by Cundari et al.29 However,
previous multireference calculations indicated the ground
state of copper(�-diketiminate)(nitrene) complexes to be a
singlet.29 The singlet state of L′Cu(NH) is thus best described
with methods that can incorporate the multireference char-
acter of this open-shell singlet. DFT is, of course, a single
determinant modeling technique.61 We will revisit the

singlet-triplet splitting of L′Cu(NH) with ab initio tech-
niques in the following section.

2. ccCA Calculations. In light of the prediction of the
singlet-triplet splitting of L′Cu(NH) by different DFT
methods, in comparison to previous CASSCF calculations,29

it is of interest to evaluate the predictions of wave function-
based approaches such as ccCA. These calculations were
performed at the B3LYP/cc-pVTZ optimized geometries
given the similarity in geometry among the different
functional/basis set combinations. The ccCA method predicts
that the singlet state of L′Cu(NH) is lower than the triplet
state by 3.7 kcal mol-1, which is comparable in magnitude
and direction with the predictions made Via CASSCF
calculations (5.6 kcal mol-1).29 Since there is similarity
among the DFT methods vis-à-vis the difference in energy
between 1,3L′Cu(NH), the deviation between ccCA and all
three DFT predictions of the singlet-triplet splitting is very
similar, that is, a difference of ∼17 kcal mol-1 and with a
reversal of ordering of the two multiplicities.

2.1. ccCA Prediction of Copper Nitrene Ground State. A
breakdown of the ccCA energy into its components is very
interesting in terms of how each constituent “prefers” either
the singlet or triplet state of L′Cu(NH) as the ground state.
Table 2 shows ccCA reference energy [E(MP2/CBS) in eq
1] and the breakdown of each contributing term to the total
ccCA energy. Note that similar comments can be made for
the singlet-triplet ordering of the transition states for C-H
and H-H insertion, Table 2. The ccCA reference energy
predicts that the singlet state is lower than the triplet state
for the L′Cu(NH) actiVe species by 14.9 kcal mol-1. When

Table 1. ∆H in kcal mol-1 for All Reactions Shown in Scheme 1a

H-H Activation Results

singlet state (S ) 0) calculation results triplet state (S ) 1) calculation results

method B3LYP PBE1KCIS B97-1 B3LYP PBE1KCIS B97-1

basis set 6-311++G(d,p) cc-pVTZ cc-pVTZ ccCA 6-311++G(d,p) cc-pVTZ cc-pVTZ ccCA

R f P -83.9 -89.7 -84.9 -72.5 -70.5 -76.4 -72.1 -76.1
R f TS 3.4 0.7 2.4 5.9 8.9 6.0 7.7 27.3
TS f P -87.3 -90.4 -87.3 -78.4 -79.3 -82.4 -79.8 -103.5
I -92.9 -99.9 -96.3 -96.9 -92.9 -99.9 -96.3 -96.9
II -16.5 -17.4 -17.3 -18.1 -16.5 -17.4 -17.3 -18.1
III 83.9 89.7 84.9 72.5 70.5 76.4 72.1 76.1
IV 25.5 27.6 28.7 42.6 38.9 40.9 41.5 38.9
V -9.6 -14.7 -13.6 19.0 3.8 -1.4 -0.8 15.3
VI 47.0 49.4 50.0 34.5 47.0 49.4 50.0 34.5

C-H Activation Results

singlet state (S ) 0) calculation results triplet state (S ) 1) calculation results

method B3LYP PBE1KCIS B97-1 B3LYP PBE1KCIS B97-1

basis set 6-311++G(d,p) cc-pVTZ cc-pVTZ ccCA 6-311++G(d,p) cc-pVTZ cc-pVTZ ccCA

R f P -60.5 -65.0 -62.1 -51.0 -46.5 -51.6 -49.2 -54.7
R f TS 7.3 4.8 5.9 12.7 13.1 10.2 18.8 29.7
TS f P -67.8 -69.8 -68.0 -63.7 -59.6 -61.8 -59.3 -84.4
I 10.9 9.7 11.0 11.5 10.9 9.7 11.0 11.5
II -96.9 -102.2 -101.8 105.2 -96.9 -102.2 -101.8 105.2
III 60.5 65.0 62.1 51.0 46.5 51.6 49.2 54.7
IV 25.5 27.6 28.7 42.6 39.5 40.9 41.5 38.9
V -11.0 -11.8 -9.6 19.5 3.0 1.5 3.2 15.8
VI 47.0 49.4 50.0 34.5 47.0 49.4 50.0 34.5

a R, TS, and P denote the reactant, transition state, and product, respectively.
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electron correlation [∆E(CC)] is added beyond the MP2
level, the singlet and triplet state of L′Cu(NH) now display
a difference of 2.0 kcal mol-1, with the singlet still lower in
energy. The coupled cluster calculation thus counteracts, but
does not reverse, the MP2-based reference energy, leaving
L′Cu(NH) in a close energetic balance among the two spin
states. The other additive terms (core-valence, relativistic,
and zero-point energy) have negligible difference, although
the difference in core-valence contributions is more sig-
nificant for the transition states than the ground state
L′Cu(NH), Table 2. The core-valence correction favors the
singlet state and may be a reflection of the change in formal
oxidation state at copper.

2.2. Multireference ccCA (MR-ccCA) Prediction of
Copper Nitrene Ground State. As shown in Table 3, MR-
ccCA supports previous CASSCF and single-reference ccCA
calculations, that is, that a singlet is the electronic ground
state of the copper nitrene, L′Cu(NH). In the case of MR-
ccCA, the singlet state is predicted to be 9.1 kcal mol-1 lower
in energy than the triplet state. Interestingly, this value is
approximately halfway between DFT and single reference
ccCA predictions. Furthermore, we note that all of the MR
component calculations in MR-ccCA predict that the singlet
state is the lower energy than the triplet state, Table 3;
although, similar to single reference ccCA, adding in electron
correlation beyond second-order perturbation theory acts to
reduce the singlet-triplet splitting of L′Cu(NH). As a final
justification for the use of MR-ccCA, the leading reference
coefficients predicted with the AQCC method for both the
singlet and triplet system are 0.722 and 0.814, respectively,
indicating significant multireference character.

2.3. Reaction Coordinates: Comparison of ccCA Versus
DFT. Since the reaction energy differences among the three
DFT methods are similar for the majority of the component
reactions, Scheme 1 and Figure 2, we focus on B3LYP/6-
311++G(d,p) and ccCA results for the remaining discussion.
Comparing the H-H bond activation reaction coordinates
(singlet state), we find that the largest B3LYP-ccCA differ-
ence is 28.6 kcal mol-1 for reaction V, which involves the

multireference molecule, L′Cu(NH): the HAA reaction of
L′Cu(NH) with H2 to yield L′Cu(NH2) and H atom. The
lowest difference is 0 kcal mol-1 for reaction IV, the dis-
sociation of imidogen (3NH) from the triplet copper-nitrene
complex to yield the copper catalyst model, L′Cu (i.e., there
was essentially no difference between ccCA and B3LYP for
reaction IV). Comparing the triplet potential energy surface
for H-H bond activation, we found that the largest DFT-
ccCA calculated difference is 12.5 kcal mol-1 for reaction
VI, which described the bond dissociation energy of the
copper-nitrogen bond of L′Cu(NH2). Thus, in general, it
appears that the biggest diVergence between the DFT and
ccCA methods is for those processes that inVolVe radical
species and homoloytic bond dissociation.

There are two plausible reaction mechanisms for C-H
and H-H bond activation by a copper-nitrene complex: a
concerted [1 + 2] direct insertion and nonconcerted pathways
initiated by HAA reaction. Previous DFT calculations in
concert with experimental studies support a mechanism
involving direct [1 + 2] insertion.30 On the singlet surface
for H2 functionalization, the [1 + 2] insertion reaction is
calculated to be exothermic by -72.5 kcal mol-1 versus
-83.9 kcal mol-1 determined at the B3LYP/6-311++G(d,p)
level of theory, Table 1. The singlet insertion barrier is small
using both density functional and wave function based
techniques (3.4 kcal mol-1 for B3LYP/6-311++G(d,p) and
5.9 kcal mol-1 for ccCA). The kinetic barrier to H2 insertion
is more divergent on the triplet surface: 8.9 kcal mol-1 for
B3LYP/6-311++G(d,p) and 27.3 kcal mol-1 for ccCA. For
the methane functionalization pathway, Table 1, there is more
congruity between DFT- and ccCA-calculated energetics,
although as for the H2 reactions, discrepancies are more
apparent on the triplet than the singlet surface.

Summary and Conclusions

The kinetics and thermodynamics of nitrene insertion into
C-H and H-H have been studied using several levels of
theory: B3LYP/6-311++G(d,p), B97-1/cc-pVTZ, PBE1KCIS/

Table 2. Correlation Consistent Composite Approach (ccCA) Total Energy at 298 K and the Constituent Terms in au for
Complexes at the Singlet and Triplet States

complex electronic state
ccCA reference

energya correlation effects term
core valence

term
relativistic effects

term
zero-point
correction

ccCA total
energy at 298 K

L′Cu-NH singlet -1921.315616 -0.019974 -0.807883 -14.309706 0.104388 -1936.348792
L′Cu-NH triplet -1921.291884 -0.040519 -0.806430 -14.307726 0.103626 -1936.342932
L′Cu-NH3(TS)b singlet -1922.461932 -0.038028 -0.809139 -14.310405 0.118110 -1937.501394
L′Cu-NH3(TS) triplet -1922.391377 -0.094062 -0.785643 -14.305786 0.115420 -1937.461448
L′Cu-NH2CH3(TS) singlet -1961.714306 -0.062155 -0.856912 -14.321781 0.150333 -1976.804821
L′Cu-NH2CH3(TS) triplet -1961.652950 -0.112235 -0.834112 -14.320529 0.148067 -1976.771758

a Reference energy is computed from the Schwartz two-point extrapolation equation of the MP2 energies at the aug-cc-pVTZ and
aug-cc-pVQZ basis sets. b TS refers to the energy of complex at the transition state.

Table 3. Multireference Correlation Consistent Composite Approach (MR-ccCA) Total Energy and the Constituent Terms in
au for Complexes at the Singlet and Triplet State

complex electronic state MR-ccCA reference energya
correlation

effects term
core valence

term
relativistic

effects term
zero-point
correction

MR-ccCA total
energy at 298 K

L′Cu-NH singlet -1921.176380 0.043125 -0.760333 -14.308796 0.104388 -1936.097995
L′Cu-NH triplet -1921.152392 0.031002 -0.760049 -14.305705 0.103626 -1936.083518

a Reference energy is computed from the Schwartz two-point extrapolation equation of the CASPT2 energies with the aug-cc-pVDZ and
aug-cc-pVTZ basis sets for L′Cu-NH.
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cc-pVTZ, and ccCA. Each DFT method shows no significant
difference from the other two DFT methods despite the use
of both hybrid and meta-GGA functionals, as well as both
Pople-style and correlation consistent basis sets. Hence, the
deviations of ccCA results with respect to the different DFT
methods studied here are very similar. All three DFT methods
predict the ground state of L′Cu(NH) to be the triplet;
however, ccCA results show the singlet state to be the ground
state. The contributions to the total ccCA energy indicate
that ccCA prediction of the singlet state is due to ccCA
reference energy. The ccCA reference energy (which mimics
the complete basis set limit of MP2) predicts that the singlet
state is lower than the triplet state for the L′Cu(NH) active
species by 14.9 kcal mol-1. When electron correlation
[∆E(CC)] is added beyond the MP2 level, the singlet and
triplet state of L′Cu(NH) display a difference of 2.0 kcal
mol-1, with the singlet still lower in energy. The coupled
cluster calculation thus counteracts, but does not reverse, the
MP2-based reference energy, leaving L′Cu(NH) in a close
energetic balance among the two spin states. MR-ccCA
calculations are in agreement with CASSCF and single
reference ccCA and yield a singlet-triplet splitting of 8.3
kcal mol-1, which is halfway between the DFT and single-
reference ccCA predictions. In general, the largest difference
between DFT and ccCA methods is for those processes that
involve radical species and homoloytic bond dissociation.
Other research in our group indicates that spin contamination
can be problematic in open-shell organic62 and inorganic
compounds,63 making the use of restricted open-shell
methodologies a prudent choice. However, no evidence for
spin contamination was seen in the present research.
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Abstract: Multiconfigurational second-order perturbation theory calculations based on a
complete active space reference wave function (CASPT2), employing active spaces of increasing
size, are well converged at the level of 12 electrons in 12 orbitals for the singlet-triplet
state-energy splittings of three supported copper-dioxygen and two supported copper-oxo
complexes. Corresponding calculations using the restricted active space approach (RASPT2)
offer similar accuracy with a significantly reduced computational overhead provided an inner
(2,2) complete active space is included in the overall RAS space in order to account for strong
biradical character in most of the compounds. The effects of the different active space choices
and the outer RAS space excitations are examined, and conclusions are drawn with respect to
the general applicability of the RASPT2 protocol.

Introduction

In order to better understand the mechanistic details of
substrate oxidations catalyzed by copper-containing metal-
loenzymes, considerable effort has been devoted to the
synthesis and the characterization of smaller copper coor-
dination complexes capable of activating molecular oxygen.1-9

In a recent example, Hong et al.10 reported the preparation,
structural characterization, and reactivities of related Cu(I)-
R-ketocarboxylate complexes supported by iminopyridine
ligands appended with arene substituents positioned so as
to be susceptible to intramolecular attack by an activated
oxygen species (Scheme 1). Using density functional theory
(DFT) and multiconfigurational second-order perturbation
theory based on a complete active space reference wave
function (CASSCF/CASPT2), the microscopic details of the
multistep mechanism for the observed oxidation reaction

have been elucidated,10 as has the sensitivity of the reaction
path energetics to different ligand sets.11

As indicated in Scheme 2 (in which only the N atoms of
the supporting ligand are shown), the reaction proceeds by
an initial coordination of molecular oxygen to the supported
copper complex. Three isomeric structures were predicted
at the DFT level, two of which were characterized by end-
on coordination of the O2 moiety, while the other exhibited
side-on coordination. Following decarboxylation and sub-
sequent cleavage of the O-O bond in an intermediate
peroxybenzoate complex, two isomeric Cu(II)-oxyl species
could be accessed, differing in the coordination geometry
about the Cu center (square-planar (SP) vs trigonal-bipyra-
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midal (TBP); the literature alternatively sometimes refers to
such species as formal Cu(III)-oxo complexes, but calcula-
tions make clear that a Cu(II)-oxyl formulation is more
appropriate given the relevant electronic structures).10,12-15

Both the peroxybenzoate and the Cu(II)-oxyl intermediates
were determined to be highly reactive with respect to the
oxidation of the pendant arene ring in the iminopyridine
ligand. Experimental investigations designed to isolate a
Cu(II)-oxyl intermediate and to extend the reactivity of such
species to external substrates continue to be actively pursued.

Considering in more detail the theoretical modeling of
these species, several key intermediates are well described
as having biradical character. In particular, the initial oxygen
adducts and the Cu(II)-oxyl intermediates. In the case of the
oxygen adducts, whether viewed as complexes of molecular
O2 with Cu(I) or as Cu(II)-superoxide compounds, two
electrons are effectively localized on distinct centers: the two
O atoms in the former instance and the Cu(II) and one O
atom in the latter.16 The latter localization also prevails in
the Cu(II)-oxyl intermediates. Such biradical character
introduces challenges with respect to computing the proper-
ties of singlet electronic states based on single-determinant
formalisms, like Kohn-Sham density functional theory (KS-
DFT).17 A proper spin and spatial wave function for a
biradical singlet, also sometimes referred to as an open-shell
singlet, formally requires a minimum of two determinants.
Nevertheless, by invocation of a relationship between the
eigenvalues of the Heisenberg-Slater-Dirac Hamiltonian18-21

and the energies obtained from broken-symmetry and high-
spin single-determinant calculations,22-25 DFT models have
been successfully employed to compute state-energy split-
tings in many open-shell coordination compounds.9,26-28

However, this practical approach has a number of draw-
backs, particularly insofar as no spin-pure wave function (or
density) can be represented by a single determinant for states
other than that of the highest spin. Instead, the broken-
symmetry states having Sz values below the Smax value for
the high spin state may be said to be spin contaminated, and
as such it is not clear how to evaluate properties other than
the state energies. To be more precise, we should say that it
is the Kohn-Sham determinant that is spin contaminated s
the wave function for the corresponding density is not known,
so we cannot rigorously assess its spin expectation value,
but, in practice, properties determined from broken-symmetry
DFT calculations do appear to suffer from spin contamination.

In contrast to single determinantal KS-DFT, multideter-
minantal states are properly represented in multiconfigura-
tional self-consistent field (MCSCF) theory.29 The complete
active space (CASSCF)30 implementation of this theory
constructs a wave function as a linear combination of all
possible spin and spatially adapted determinants that may
be formed from the distribution of a given number of “active”
electrons in a given number of orbitals. The “active space”
orbitals are typically chosen based on chemical analysis of
the problem at hand, e.g., all bonding and antibonding
orbitals associated with one or more bond-making or
-breaking processes along a reaction coordinate. When
supplemented by multireference second-order perturbation
theory, CASSCF/CASPT2,31 in order to account for dynami-
cal electron correlation effects not included at the CASSCF
level, accuracies on the order of 0.2 eV have been docu-
mented for state-energy splittings in molecules containing
elements throughout the periodic table.32-41 In the particular
case of the copper chemistry discussed above, Hong et al.10

and Huber et al.11 compared CASSCF/CASPT2 singlet-triplet
splittings to those derived from broken-symmetry DFT
calculations in order to assess the likely accuracy of the latter.
The two models were in generally good agreement for the
Cu(II)-oxyl species, but agreement was not as good for the
initial oxygen adducts.

While such comparisons between broken-symmetry DFT
and CASSCF/CASPT2 can be informative, the number of
determinants in the CASSCF model increases factorially with
an increasing number of orbitals in the active space, leading
to a practical limit of roughly 16 electrons in 16 orbitals.17,42

When larger active spaces are needed, e.g., in a trinuclear
transition metal complex where a balanced active space might
require three sets of valence d and s orbitals, the CASSCF/
CASPT2 model cannot be applied in a practical fashion. In
order to address this limitation, Malmqvist et al.43 recently
developed a second-order perturbation theory based on the
restricted active space self-consistent field method, namely,
RASSCF/RASPT2. By subdividing the active space orbitals
into three sets, one set entirely equivalent to a CAS space,
one set consisting of occupied orbitals from which only a
limited number of electrons may be excited, and one set
consisting of virtual orbitals into which only a limited number
of electrons may be excited; the number of orbitals and
electrons that may be considered is substantially increased
relative to the CASSCF/CASPT2 model. While initial results

Scheme 2
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from studies of mono- and binuclear copper-oxygen adducts
have been promising, much remains to be learned with
respect to the question of how best to choose a RASSCF
active space and excitation protocol. The aim of the present
paper is to explore this question for biradical copper-oxygen
adducts and Cu(II)-oxyl intermediates analogous to those
already discussed above. In particular, we examine the
predicted singlet-triplet splittings and the relative isomer
energies for the three adducts 1a-c and the two intermediates
2a and 2b shown in Scheme 3. In order to facilitate this
benchmarking study, the sterically demanding N-donor ligand
shown in Scheme 1 is replaced by a simplified diimine ligand
similarly characterized by two sp2-hybridized donor nitrogen
atoms. We begin with a discussion of the computational
details, then present results designed to assess convergence
in predicted energies with respect to methodological choices,
and conclude with some general observations likely to prove
useful in future applications of the RASSCF/RASPT2 model.

Computational Details

Geometries of the structures in Scheme 3 were optimized at
the M06-L44 level of density functional theory adopting a
broken-symmetry unrestricted formalism for the nominal
singlet states. As we are interested here in comparing
different RASSCF/RASPT2 protocols for given geometries,
the choice of any particular geometry is arbitrary, but it is
perhaps worth emphasizing that computed state-energy
splittings in this work are vertical and not adiabatic.
Geometry optimizations employed the Cu basis set and
pseudopotential of Dolg et al.45 augmented with three f
functions having exponents of 5.10, 1.275, and 0.32; the
6-31G(d) basis set46 was used for all other atoms.

Multiconfigurational calculations were accomplished ac-
cording to a number of different protocols. In all cases, basis
sets of atomic natural orbital (ANO) and ANO-RCC (for
Cu) type47,48 were employed using contractions of 5s3p2d1f,
3s2p1d, 3s2p1d, 3s2p, and 1s for Cu, O, N, C, and H,
respectively. In prior work on the experimentally character-
ized system of Hong et al., (12,12) CAS spaces were adopted
for CASSCF/CASPT2 calculations on the various species
with the orbitals included based on a careful assessment of
occupation numbers for different active space constructions.10

These spaces inevitably contained orbitals formed from the
bonding and the antibonding combinations of O 2p orbitals

and Cu 3d orbitals, with the precise number of σ, π, and
nonbonding orbitals being dictated by the chemical structure.
The size of the active space was chosen based on consid-
eration of 12 intermediate- and transition-state structures
along the reaction coordinate for the overall reaction
indicated in Scheme 1. Our goal was to find an active space
size that was consistent for all structures and well converged
for the predicted singlet-triplet energy splittings. The (12,12)
space fulfilled these criteria. With respect to convergence
issue, calculations employing expanded (14,14) active spaces
predicted very similar singlet-triplet splittings, e.g., 2.33 and
2.34 kcal/mol for structure 1b of the present study with
(12,12) and (14,14) active spaces, respectively.

Those CAS(12,12) active space orbitals most relevant to
the present study are illustrated in Figures 1 and 2; in
particular, for each of the five structures discussed in this
paper, two orbitals in the relevant active space had occupation
numbers in the singlet state differing substantially from 2.0
or 0.0, which is consistent with varying degrees of biradical
character and are shown in Figure 1. In addition, for the
particular case of 1a, the remaining 10 orbitals are shown
in Figure 2. These orbitals are roughly representative of the
analogous ones used for the various other structures, which,
in the interest of brevity, are not depicted here. For 1a-c,
the orbitals in Figure 1 involve π bonding and antibonding
combinations of a Cu 3d orbital and an O2 π* orbital, and
the CAS(12,12) occupation numbers were 1.30, 0.70 (1a),
1.05, 0.95 (1b), and 1.78, 0.25 (1c). In the cases of 2a and
b, it was hybrid π orbitals from the Cu 3d and the O 2p
orbitals that had occupation numbers of 1.16, 0.85 (2a) and
1.11, 0.89 (2b). All of these orbitals had occupation numbers
of 1.0 in the corresponding triplet states. The other orbitals
of the (12,12) active space included all remaining Cu 3d
orbitals and a second shell of Cu d orbitals for correlation.
When forming smaller (10,10) and (8,8) active spaces, as
described below, hybrid orbitals having substantial Cu d
character were sequentially removed based on the degree to
which their occupation numbers were very near 2.0 or 0.0
for occupied and virtual orbitals, respectively.

In the RASSCF model, the active subspace is divided into
three distinct regions: RAS1, RAS2, and RAS3. The RAS2
region is identical to the active region in a CASSCF
calculation, i.e., all possible spin- and symmetry-adapted
configuration state functions (CSFs) that can be constructed
from the orbitals in RAS2 are included in the multiconfigu-
rational wave function. The RAS1 and RAS3 spaces, on the
other hand, permit the generation of additional CSFs subject
to the restriction that a maximum number of excitations may
occur from RAS1, which otherwise contains only doubly
occupied orbitals, and a maximum number of excitations
may occur into RAS3, which otherwise contains only external
orbitals. There are various ways in which one can select the
orbitals. In the present case, the maximum size of the full active
space was kept at 12 orbitals, in analogy with the CASSCF
calculations. Only the two orbitals with an occupation number
significantly different from two and zero (see above) were
placed in RAS2, with the remaining occupied 3d orbitals
(mostly) being in RAS1 orbitals) and the unoccupied 4d orbitals
(mostly) being in RAS3. Several levels of maximum excitation

Scheme 3

Intermediates of O2 with Cu(I)-R-Ketocarboxylate J. Chem. Theory Comput., Vol. 5, No. 11, 2009 2969



from RAS1 or into RAS3 were considered, namely up to double
(SD), triple (SDT), and quadruple excitations (SDTQ). The
general notation for a RASPT2 calculation is RASPT2(j,k)/(l,m)/
n, where j is the number of electrons in RAS1 and RAS2, k is
the number of orbitals in all RAS spaces, l is the number of
electrons in RAS2, m is the number of orbitals in RAS2, and

n is the maximum level of excitation permitted out of RAS1
and into RAS3. Thus, for instance, a RASPT2(12,12)/(2,2)/3
calculation would have 10 electrons and five orbitals in RAS1,
two electrons and two orbitals in RAS2, five orbitals in RAS3,
and would permit up to triple excitations out of RAS1 or into
RAS3.

Figure 1. Isodensity surfaces (0.04 au) and occupation numbers for the two active space orbitals with occupation numbers
closest to 1.0 from CAS(12,12) calculations for 1a-c and 2a and b. Pairs of orbitals are ordered above and below one another
(see also Scheme 3 for isomer ordering). Atomic colors are white (H), green (C), blue (N), red (O), and bronze (Cu).

Figure 2. Isodensity surfaces (0.04 au) and occupation numbers for the remaining 10 active space orbitals that are not shown
in Figure 1 from a CAS(12,12) calculation for 1a. Atomic colors are white (H), green (C), blue (N), red (O), and bronze (Cu).
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In all calculations, Cholesky decomposition49,50 of the two
electron integrals was accomplished with a threshold of 10-5

au. Reduced scaling evaluation of the Fock exchange
matrices in the CASSCF and RASSCF calculations was
accomplished by means of the local-K (LK) screening
approach51 employing localized Cholesky orbitals.52

M06-L calculations were done with MN-GFM,53 a locally
modified version of the Gaussian03 electronic structure
program suite.54 All CASSCF/CASPT2 and RASSCF/
RASPT2 calculations were done with the MOLCAS 7.2
package.42

Results and Discussion

Singlet-Triplet State-Energy Splittings. We begin
with an examination of the predicted singlet-triplet
splittings at the CASSCF and RASSCF and the CASPT2
and RASPT2 levels, as a function of active space choice.
Results from CASSCF and CASPT2 calculations are
presented in Table 1.

A few trends merit discussion in the CASSCF/CASPT2
singlet-triplet splittings. First, at the CASSCF level, expand-
ing the active space from (10,10) to (12,12) causes changes
in the predicted splittings of 1 kcal/mol or less. At the
CASPT2 level, the same change in active space size has an
effect of roughly similar magnitude, with the exception of
1c where it is a somewhat larger 2.3 kcal/mol. In addition,
the change in the splitting going from the CASSCF level to
the CASPT2 level is 0.4, 1.2, 6.3, 1.2, and 1.6 kcal/mol,
respectively, for 1a-c and 2a and b. Dynamical correlation
at the CASPT2 level favors the triplet state in every instance,
but the change is small with the exception of 1c, which
continues to be somewhat of an outlier. All of these
observations suggest that the CASPT2(12,12) values may
be considered to be reasonably well converged (and, as noted
in the Computational Details Section, expanding to (14,14)
in select instances led to negligible changes in the predicted
splittings). Thus, for future discussion purposes, we will
consider the CASPT2(12,12) values to be reliable, with the
possible exception of 1c, where a larger uncertainty exists.

With respect to smaller active spaces, it is noteworthy that
the very simple (2,2) space offers a reasonable accuracy in
most instances, consistent with a fairly simple biradical
description for the species under consideration. The exception

is again 1c, but, as can be judged by the occupation numbers
of the frontier orbitals for this structure in Figure 1, it is the
least biradicaloid of the five compounds considered here, so
one would not expect the (2,2) active space to capture as
much nondynamical correlation as in the other instances. The
(8,8) space leads to very poor predictions at the CASSCF
level because it is difficult to find any clear distinction
between different (8,8) spaces based on occupation numbers
(cf. Figure 2 for the case of 1a, suggesting that either more
or fewer orbitals leads to a better balance). Including
additional correlation effects at the CASPT2 level moderates
the poor balance of the (8,8) spaces to some extent, but
results remain poor compared to CASPT2(12,12).

To put into a better perspective the efficiencies of different
active spaces and the biradical characters of the singlet wave
functions, we list in Table 2 the numbers of CSFs and the
dominant CSF weights for different active space choices.
As the numbers of CSFs in the (2,2) spaces are about 5 orders
of magnitude fewer than in the (12,12) spaces, the reasonable
accuracy of the (2,2) predictions is certainly noteworthy from
an efficiency standpoint. Inspection of the CSF weights
makes clear that all triplets are essentially single determi-
nantal, while most singlets have very high biradical character
(defined as having roughly equal weights of the two dominant
configurations), with 1c being the least biradical.

Turning next to the RASSCF and RASPT2 calculations,
Table 3 lists the computed state-energy splittings for various
RAS protocols, and Table 4 provides information on the
numbers of CSFs and the weights of the dominant configura-
tions associated with different active space choices. For
convenience, in Table 3 the results from CASPT2(2,2) and
CASPT2(12,12) calculations are recapitulated, and the same
is true for CAS(12,12) in Table 4.

The first point to address is the very good performance of
the RASPT2(12,12)/(2,2)/2 protocol. Compared to CASPT2-
(12,12), all state-energy splittings are predicted to within a
mean unsigned error of 0.8 kcal/mol and a maximum
unsigned error of 1.1 kcal/mol. Note in particular, that this
is a better accuracy than that of CASPT2(2,2), suggesting
that the additional excitations considered in the RAS protocol
are important. With respect to dynamical correlation energy,
the difference between the RASPT2(12,12)/(2,2)/2 and
RASSCF(12,12)/(2,2)/2 state-energy splittings is usually
small (except for 1c, it does not exceed 1.2 kcal/mol), but

Table 1. Singlet-Triplet State-Energy Splittings (Kcal/Mol)
Predicted at the CASSCF and CASPT2 Levels for Various
Active Space Choices

structure

active space 1a 1b 1c 2a 2b

CASSCF
(2,2) 0.4 0.4 -4.5 1.8 2.1
(8,8) -11.7 -13.1 -23.0 -10.7 -10.1
(10,10) 1.8 0.9 -8.8 3.2 3.6
(12,12) 0.8 1.1 -9.4 4.0 4.4

CASPT2
(2,2) -0.1 0.4 -11.7 2.8 3.6
(8,8) 8.1 7.8 -3.9 9.7 10.7
(10,10) 2.5 1.8 -5.4 4.7 5.3
(12,12) 1.2 2.3 -3.1 5.2 6.0

Table 2. Number of Configuration State Functions and
Dominant Weights for Various CASSCF Active Space
Choices

dominant CSF weights
active space no. CSFs 1a 1b 1c 2a 2b

(2,2) 3a 55/45b 51/49 79/21 56/44 54/46
1 100 100 100 100 100

(8,8) 1 764 59/39 51/48 83/15 61/37 58/40
2 352 99 99 98 98 98

(10,10) 19 404 59/39 51/47 85/12 57/41 55/43
29 700 98 98 97 97 97

(12,12) 226 512 63/34 51/46 85/10 56/41 54/43
382 239 97 97 97 96 96

a Singlet above triplet. b Singlet above triplet; the weights of the
two dominant CSFs are reported in the former case, and the
weight of the one dominant CSF in the latter case.
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theRASPT2model is inbetteragreementwithCASPT2(12,12)
in every instance, indicating the utility of the post-RASSCF
PT2 calculation. Considering, as indicated in Table 4, that
the number of CSFs is reduced by about 2 orders of
magnitude on going from CASPT2(12,12) to RASPT2(12,12)/
(2,2)/2, this is a particularly impressive level of accuracy.

As an additional measure of the importance of the orbital
relaxation associated with RASSCF excitations outside the
central (2,2) CAS space, we examined using the orbitals from
a CASSCF(2,2) calculation as frozen orbitals for a subsequent
RASPT2(12,12)/(2,2)/2 calculation. That is, we did not
reoptimize any molecular orbital coefficients after the
CAS(2,2) step but instead only optimized the configuration
interaction coefficients in the RAS(12,12)/(2,2)/2 wave
function that was used as the multiconfigurational reference
for the PT2. Such a calculation is computationally very

inexpensive. However, the results were essentially the same
as those obtained at the CASPT2(2,2) level, indicating that
orbital relaxations associated with the RAS outer space
excitations do improve the agreement with CASPT2 calcula-
tions using larger active spaces.

Turning to the consideration of triple and quadruple
excitations in the outer RAS spaces, changes in predicted
state-energy splittings tend to be small but offer quantitative
improvement in the agreement with CASPT2(12,12) values.
At the RASPT2(12,12)/(2,2)/4 level, for which the number
of CSFs is reduced by a factor somewhat larger than 4
compared to the CASPT2(12,12) level, the agreement
averages within 0.1 kcal/mol for all structures other than 1c.
For this latter structure, higher RAS excitations lead to
progressively worse agreement with CASPT2(12,12). As
already noted above, this structure is the one case where the
(12,12) active space may not represent a sufficiently large
space to be considered converged, and thus, it may not be
as meaningful to make a comparison for this least biradica-
loid dioxo species. As a technical note, the current imple-
mentation of the RASPT2 model in MOLCAS is such that
RASSCF convergence tends to be rapid when only double
excitations are considered and slows down considerably when
higher levels of excitations are allowed. While future
development efforts will be targeted to improve the conver-
gence in the latter instance, the excellent accuracy of the
RASPT2(12,12)/(2,2)/2 model for the present test set bodes
well for future applications to other analogous biradicaloid
transition-metal oxo species.

A curious feature of the outer-space RAS excitations that
merits further study is the degree to which dominant
configuration weights are reduced when excitations are
limited to no more than triples. As seen in Table 4, in every
instance the dominant configuration weights drop by 3-10%
at the RASSCF(12,12)/(2,2)/3 level compared to that of the
RASSCF(12,12)/(2,2)/2 level. Of course, one might argue
that as the number of possible CSFs increases to the full CI
limit, one might naturally expect the weights of the individual
configurations to drop somewhat, but on going to the
RASSCF(12,12)/(2,2)/4 level, i.e., including quadruples, the
weights return to very near the RASSCF(12,12)/(2,2)/2
values and are moreover almost identical to the CAS-
SCF(12,12) values. Such oscillating behavior among the even
and the odd levels of excitations is reminiscent of the
convergence behavior of the correlation energy in the
Møller-Plesset perturbation theory explored in detail by
Olsen et al.55,56 and also by Luna et al.57 This last reference57

deserves special attention since it focuses on the problem of
poor convergence with second-order perturbation theory for
ground-state Cu(I) complexes.

In order to study this point further, one would have to
monitor CSF weights for still higher levels of excitation. For
the present molecules, however, such calculations are
prohibitively expensive. We will investigate this behavior
for smaller test systems in the future.

We now consider an alternative protocol, which one might
adapt in the absence of any knowledge of biradical character
in the subject molecules. In particular, we examine RASPT2
protocols with a total of 12 electrons in 12 orbitals without

Table 3. Singlet-Triplet State-Energy Splittings (kcal/mol)
Predicted at the RASSCF and RASPT2 levels for Various
Active Space Choices

structure

active space 1a 1b 1c 2a 2b

RASSCF
(12,12)/(2,2)/2 0.7 0.9 -7.7 3.4 3.8
(12,12)/(2,2)/3 0.8 1.0 -8.5 3.8 4.2
(12,12)/(2,2)/4 0.8 1.1 -9.2 3.9 4.4
(12,12)//2a 24.4 20.4 5.5 32.1 32.6
(12,12)//3a 11.7 12.2 -4.7 17.8 14.7

RASPT2
(12,12)/(2,2)/2 0.8 1.5 -2.6 4.1 5.0
(12,12)/(2,2)/3 0.8 1.9 -2.1 4.8 5.8
(12,12)/(2,2)/4 1.6 2.3 2.0 5.3 6.0
(12,12)//2a 22.9 25.6 5.3 25.8 25.4
(12,12)//3a 2.3 3.0 -5.9 17.5 9.4

CASPT2
(2,2) -0.1 0.4 -11.7 2.8 3.6
(12,12) 1.2 2.3 -3.1 5.2 6.0

a The excitation level for the triplet state is formally one higher,
since the generation of a triplet state from the starting set of six
occupied RAS1 and six virtual RAS3 orbitals requires an initial
single excitation.

Table 4. Number of Configuration State Functions and
Dominant Weights for Various Rasscf Active Space
Choices and Excitation Levels

dominant CSF weights
active space no. CSFs 1a 1b 1c 2a 2b

(12,12)/(2,2)/2 2 028a 60/37b 51/46 84/13 56/41 54/43
2 891 97 97 97 97 96

(12,12)/(2,2)/3 14 428 57/31 47/41 77/10 51/37 49/39
22 991 88 88 87 87 87

(12,12)/(2,2)/4 54 678 62/33 51/44 84/9 55/40 53/42
91 091 95 95 95 94 94

(12,12)//2c 703 90/-d 90/-d 89/6 82/15 84/13
8 991 97 97 97 97 97

(12,12)//3c 6 003 66/15 67/13 65/31 59/22 56/24
45 441 90 88 88 82 88

CAS(12,12) 226 512 63/34 51/46 85/10 56/41 54/43
382 239 97 97 97 96 96

a Singlet above triplet. b Singlet above triplet; the weights of the
two dominant CSFs are reported in the former case, and the
weight of the one dominant CSF in the latter case. c The excitation
level for the triplet state is formally one higher, since the
generation of a triplet state from the starting set of six occupied
RAS1 and six virtual RAS3 orbitals requires an initial single
excitation. d No second singlet CSF has a weight of 5% or higher.
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any inner CAS(2,2) space, permitting up to double the
excitations from the occupied to the virtual space. To be
precise, it is the singlet state for which excitations up to
double are allowed. For the triplet state, generation of a triplet
wave function already requires a single excitation (with spin
flip), so that the triplet-state calculations actually permit up
to triple excitations in order to correspond properly with the
singlet analogs. In any case, as shown in Table 3, the
accuracy of the RASPT2(12,12)//2 approach is extremely
poor, with errors as high as 23 kcal/mol. The direction of
the errors indicates that the correlation energies predicted
for the singlet states are considerably smaller than those for
the triplet states. Inspection of the CSF weights (Table 4)
indicates that the problem appears to be with the failure of
the RAS(12,12)//2 protocol to adequately relax the orbitals
such that the weight of a formally doubly excited configu-
ration becomes fairly close to that of the reference config-
uration for the biradicaloid singlet states.

In addition to noting that this problem is least severe for
1c, which is the least biradicaloid of all of the singlets,
inspection of the absolute electronic energies further il-
lustrates the importance of this point. Triplet 1a, for example,
has a predicted electronic energy at the CAS(2,2) level of
-2 598.57346. At the RAS(12,12)/(2,2)/2 level, the corre-
sponding energy is -2 598.73770, and at the RAS(12,12)//
2, it is -2 598.73794; thus, the two are very close, as might
be expected. For the singlet state, on the other hand, the
CAS(2,2) electronic energy is -2 598.57290, and the
RAS(12,12)/(2,2)/2 energy is -2 598.73662, but the RAS-
(12,12)//2 energy is -2 598.69905, the final value being 37
mEh more positive than the RAS(12,12)/(2,2)/2 reference.
This failure to adequately rotate the most important occupied
andvirtualorbital(s) in theSCFprocedureof theRAS(12,12)//2
calculations will merit further attention but suggests that
strong nondynamical correlation effects should still be
addressed with inner CASSCF spaces when possible.

The situation improves somewhat when the RASSCF
excitation level is increased. Examining the state-energy
splittings and the CSF weights for the RASPT2(12,12)//3
level, the former are in reasonable agreement with the
CASPT2(12,12) results (except for 2a) but are not as good
as the state-energy splittings predicted at the RASPT2(12,12)/
(2,2)/2 level, where fewer CSFs are required. Interestingly,
the CSF weights are again depressed upon the inclusion of
triple excitations; the amount of that depression for the most
dominant CSF in the singlet is coincidentally about equal to
the degree to which a single configurational character is
overemphasized by the failure to include an interior CAS-
SCF(2,2) space, but consideration of the minor singlet CSF
or the dominant triplet CSF clearly illustrates the phenom-
enon. The trend on going from the RASPT2(12,12)//2 to the
RASPT2(12,12)//3 level suggests that good results might be
expected from the RASPT2(12,12)//4 level. However, the
final level requires formal quintuple excitations to generate
quadruply excited triplet states, and we were not successful
in converging such calculations, which in any case require
a number of CSFs so large that there is little point in not
simply carrying out a full CASPT2 calculation.

Relative Energies of Different Isomers. In addition to
state-energy splittings, we examined the differences in
specific spin-state energies for the three dioxygen adducts
and the two copper-oxo isomers. These results are presented
in Table 5 for the triplet states and Table 6 for the singlet
states. As we consider here only a single geometry for each
species (see Computational Details Section) and as we have
already noted the relative performances of the various models
for singlet-triplet energy differences, in principle, the data
in Table 6 should be evident from the consideration of Table
5 and the foregoing data, but it is helpful to see where errors
cancel or reinforce the isomer energies.

For the triplet states, there is good convergence in the
CASPT2 relative energies as the active space is increased
from (2,2) to (12,12) in size. Moreover, all of the RASPT2
protocolsare in fairlygoodagreementwith theCASPT2(12,12)
predictions,withthebestagreementgivenbytheRASPT2(12,12)/
(2,2)/3 model (the results are very nearly as good at the
RASPT2(12,12)/(2,2)/4 level). While this agreement suggests
that the RASPT2 approaches are doing as good a job as
CASPT2, the latter model itself may not be particularly
accurate for the isomer energies. For comparison, we

Table 5. Triplet Energies (kcal/mol) of 1b and 1c Relative
to 1a and 2b Relative to 2a Computed at Various Levels of
Theory

structure

theory 1b 1c 2b

RASPT2
(12,12)/(2,2)/2 3.9 -12.9 -0.1
(12,12)/(2,2)/3 4.3 -14.0 0.4
(12,12)/(2,2)/4 4.4 -13.3 0.1
(12,12)//2a 3.8 -13.4 0.0
(12,12)//3a 3.2 -15.1 -2.4

CASPT2
(2,2) 2.3 -12.6 1.3
(8,8) 4.2 -12.8 1.2
(10,10) 4.6 -13.6 1.1
(12,12) 4.7 -13.8 1.3

DFT
M06-L 1.9 4.4 -0.7

a The excitation level for the triplet state is formally one higher,
since the generation of a triplet state from the starting set of six
occupied RAS1 and six virtual RAS3 orbitals requires an initial
single excitation.

Table 6. Singlet Energies (kcal/mol) of 1b and 1c relative
to 1a and 2b relative to 2a Computed at Various Levels of
Theory

structure

theory 1b 1c 2b

RASPT2
(12,12)/(2,2)/2 4.7 -16.3 -0.9
(12,12)/(2,2)/3 5.4 -16.9 -0.6
(12,12)/(2,2)/4 5.0 -13.0 -0.6
(12,12)//2 6.6 -31.0 0.4
(12,12)//3 3.8 -23.3 5.8

CASPT2
(2,2) 2.9 -24.2 0.5
(8,8) 3.9 -24.8 0.1
(10,10) 3.8 -21.5 0.5
(12,12) 5.9 -18.0 0.4
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computed the M06-L relative energies for the same geom-
etries, and these are also listed in Table 5. For the
copper-oxo isomerization, the multireference models and
M06-L are in fair agreement, while M06-L predicts the 1b-a
energy difference to be smaller by about 3 kcal/mol than
computed at the multireference levels. Finally, there is a very
large discrepancy between the two types of theory for the
1c-a energy difference, with the multireference models
predicting the side-on geometry to be much more stable than
either end-on copper-oxygen complex and M06-L predicting
the opposite.

As for which, if either, level of theory is more likely to
be correct, various considerations suggest that the M06-L
predictions are likely to be the more trustworthy, at least
for the 1c-a energy difference, where the discrepancy is
largest. First, the triplets are all well described by single
determinants in which instance DFT is generally quite robust
for conformational analysis.17 Second, consideration of a
wide range of supported Cu(I)-dioxygen complexes suggests
that the particular ligand set employed here would be more
likely to favor an end-on coordination geometry to a side-
on one.6,7,16,58 Third, and perhaps most importantly, were
1c to be as stable as it is predicted to be at the RASPT2 and
CASPT2 levels, the activation energy associated with the
subsequent decarboxylation step (Scheme 2) would be
inconsistent with the experimental kinetics, where the M06-L
prediction is consistent.10 (A precise quantification of this
point would require more attention to the optimization of
the geometries for all relevant states, but the CASPT2/DFT
discrepancy of 18.2 kcal/mol listed for 1c in Table 5 seems
well outside the range of energies that might be associated
with minor geometric relaxations in the triplet states).

Thus, while we have established that the (12,12) active
space is in all cases, with the possible exception of 1c,
adequate to compute converged state-energy splittings, it
would appear that it is not adequate to compute isomer
energies when the active space is not perfectly converged
for all structures considered, with 1c again being the most
problematic case. The geometric differences between 2a and
b are small enough that even the (12,12) space seems
adequate. It would be interesting to examine whether a full
valence active space, using a RAS protocol, would give better
results, but such calculations remain outside our present
capabilities.

With respect to the relative singlet energies, most trends
identifiedfor the tripletstates remainthesame:RASPT2(12,12)/
(2,2)/3 shows the best agreement with CASPT2(12,12) with
the double and quadruple excitation levels being nearly as
good. However, the RASPT2(12,12)//2 and //3 models are
less consistent. They are surprisingly good for both 1b and
2b, considering that these levels do very poorly for
state-energy splittings, suggesting that the failure to capture
singlet correlation energy is quite consistent across geometric
isomers. The exception is 1c, where there is a greater
sensitivity to the excitation level. In this case, we do not
compare to M06-L, as the computation of biradical singlet
energies with DFT presents its own set of complications that
go beyond our interests in the present work.

Significance. We have compared the CASPT2 and
RASPT2 models for the determination of the singlet-triplet
state-energy splittings of five intermediates associated
with the formation and the reaction of copper-oxo species
derived from oxygenation of Cu(I)-R-ketocarboxylate
complexes. Based on consideration of several active
spaces, we determined that the CASPT2 model was well
converged with a (12,12) active space, but that semiquan-
titative results could be obtained with a minimal (2,2)
space in most instances. Certain intermediate active spaces
failed to be balanced, e.g., no good (8,8) active space could
be identified. At the RASPT2 level, results were quanti-
tatively very accurate (compared to CASPT2(12,12)) when
an inner (2,2) CAS space was included in a total (12,12)
space. Including up to double excitations in the outer RAS
spaces generated 2 orders of magnitude fewer configura-
tion state functions than the full CASPT2(12,12) calcula-
tions but provided essentially equivalent accuracy. Adding
additional excitations in the outer RAS spaces led to small
but systematic improvements in accuracy.

RASPT2 calculations with a (12,12) space that did not
include an inner (2,2) CAS space were less accurate in their
predictions; such calculations suffer from the requirement
that triplet states begin as single excitations (with spin flip)
from the (12,12) starting configuration, so the number of
triplet configuration state functions is artificially inflated
when additional excitations are desired to be consistent with
singlet state wave functions. While it was not possible to
include a sufficient number of excitations with this approach
to demonstrate convergence, the trend in going from singles
and doubles to singles, doubles, and triples suggests that it
could be an effective strategy if efficient SCF convergence
schemes are developed.

Neither CASPT2 nor similar RASPT2 isomer energies
were judged to be especially accurate with (12,12) active
spaces. This may reflect a greater demand on active space
size for the computation of geometric energy differences in
transition-metal complexes, or it may be specific to the
systems under consideration here. This issue deserves further
study in systems where full-valence active spaces may be
accessible.

Overall, the RASPT2 model, when applied with careful
attention to the most critical features associated with
possible nondynamical correlation, offers an efficient
alternative to more demanding CASPT2 calculations with
no loss in accuracy. These results seem particularly
encouraging for the study of chemical systems having
minimal balanced active spaces that are still so large that
they are inaccessible to the conventional CASPT2 method.

Acknowledgment. This work was supported by the
Swiss and the U.S. National Science Foundation (grants
200020-120007 and CHE-0610183, respectively). S.M.H.
thanks the DAAD for a postdoctoral fellowship.

Supporting Information Available: Geometries of all
structures together with electronic state energies from various
levels of theory. This material is available free of charge
via the Internet at http://pubs.acs.org.

2974 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Huber et al.



References

(1) Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. ReV.
1992, 92, 521–542.

(2) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. ReV.
2004, 104 (2), 1013–1045.

(3) Lewis, E. A.; Tolman, W. B. Chem. ReV. 2004, 104 (2), 1047–
1076.

(4) Klinman, J. P. J. Biol. Chem. 2006, 281, 3013–3016.

(5) Hatcher, L. Q.; Karlin, K. D. AdV. Inorg. Chem. 2006, 58,
131–184.

(6) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10 (2), 115–122.

(7) Cramer, C. J.; Tolman, W. B. Acc. Chem. Res. 2007, 40 (7),
601–608.

(8) Rolff, M.; Tuczek, F. Angew. Chem., Int. Ed. 2008, 47 (13),
2344–2347.

(9) Gherman, B. F.; Cramer, C. J. Coord. Chem. ReV. 2009, 253,
723–753.

(10) Hong, S.; Huber, S. M.; Gagliardi, L.; Cramer, C. J.; Tolman,
W. B. J. Am. Chem. Soc. 2007, 129 (46), 14190–14192.

(11) Huber, S. M.; Ertem, M. Z.; Aquilante, F.; Gagliardi, L.;
Tolman, W. B.; Cramer, C. J. Chem. Eur. J. 2009, 15, 4886–
4895.

(12) Yamaguchi, K.; Takahara, Y.; Fueno, T. In Applied Quantum
Chemistry; Smith, V. H., Schaefer, H. F., Morokuma, K., Eds.
Kluwer: Dordrecht, The Netherlands, 1986; pp 155-184.

(13) Schroder, D.; Holthausen, M. C.; Schwarz, H. J. Phys. Chem.
B 2004, 108 (38), 14407–14416.

(14) Decker, A.; Solomon, E. I. Curr. Opin. Chem. Biol. 2005,
9, 152–163.

(15) Gherman, B. F.; Tolman, W. B.; Cramer, C. J. J. Comput.
Chem. 2006, 27 (16), 1950–1961.

(16) Cramer, C. J.; Gour, J. R.; Kinal, A.; Włoch, M.; Piecuch,
P.; Moughal Shahi, A. R.; Gagliardi, L. J. Phys. Chem. A
2008, 112 (16), 3754–3767.

(17) Cramer, C. J. Essentials of Computational Chemistry:
Theories and Models, 2nd ed.; John Wiley & Sons: Chich-
ester, U.K., 2004; pp 385-427.

(18) Heisenberg, W. Z. Phys. 1928, 49, 619.

(19) Dirac, P. A. M. Proc. R. Soc. London, Ser. A 1929, 123,
714.

(20) Van Vleck, J. H. ReV. Mod. Phys. 1945, 17, 27.

(21) Slater, J. C. ReV. Mod. Phys. 1953, 25, 199.

(22) Ziegler, T.; Rauk, A.; Baerends, E. J. Theor. Chim. Acta 1977,
43, 261–271.

(23) Noodleman, L. J. Chem. Phys. 1981, 74 (10), 5737–5743.

(24) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem.
Phys. Lett. 1988, 149, 537–542.

(25) Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.;
Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Chem. Phys. Lett.
2000, 319 (3-4), 223–230.

(26) Ciofini, I.; Daul, C. A. Coord. Chem. ReV. 2003, 238, 187–
209.

(27) Neese, F. Coord. Chem. ReV. 2009, 253, 526–563.

(28) Harvey, J. N. Struct. Bonding (Berlin) 2004, 112, 151–183.

(29) Schmidt, M. W.; Gordon, M. S. Annu. ReV. Phys. Chem.
1998, 49, 233–266.

(30) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys.
1980, 48, 157–173.

(31) Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. J. Chem. Phys.
1992, 96 (2), 1218–1226.

(32) Roos, B. O.; Malmqvist, P-Å. Phys. Chem. Chem. Phys.
2004, 6, 2919–2927.

(33) Azizi, Z.; Roos, B. O.; Veryazov, V. Phys. Chem. Chem.
Phys. 2006, 8 (23), 2727–2732.

(34) Gagliardi, L. J. Am. Chem. Soc. 2003, 125, 7504–7505.

(35) Gagliardi, L.; La Manna, G.; Roos, B. Faraday Discuss. 2003,
124, 63–68.
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Abstract: Monometallic Ni(II) and Co(II) complexes with large magnetic anisotropy are studied
using correlated wave function based ab initio calculations. Based on the effective Hamiltonian
theory, we propose a scheme to extract both the parameters of the zero-field splitting (ZFS)
tensor and the magnetic anisotropy axes. Contrarily to the usual theoretical procedure of
extraction, the method presented here determines the sign and the magnitude of the ZFS
parameters in any circumstances. While the energy levels provide enough information to extract
the ZFS parameters in Ni(II) complexes, additional information contained in the wave functions
must be used to extract the ZFS parameters of Co(II) complexes. The effective Hamiltonian
procedure also enables us to confirm the validity of the standard model Hamiltonian to produce
the magnetic anisotropy of monometallic complexes. The calculated ZFS parameters are in
good agreement with high-field, high-frequency electron paramagnetic resonance spectroscopy
and frequency domain magnetic resonance spectroscopy data. A methodological analysis of
the results shows that the ligand-to-metal charge transfer configurations must be introduced in
the reference space to obtain quantitative agreement with the experimental estimates of the
ZFS parameters.

1. Introduction
The recent interest for information storage at the molecular scale
motivates both experimental and theoretical studies of molecules
presenting a bistability. Among the different bistable chemical
systems, single molecule magnets (SMMs)1-5 are the smallest
species that have been conceived. Their remarkable properties

come from their intrinsic feature to present two high spin states
of different magnetization +MS and -MS separated by an
energy barrier. From a fundamental point of view, works on
these systems have opened new perspectives in the study of
quantum mechanics effects such as tunnelling, coherence, and
interference. Magnetic anisotropy is responsible for both the
existence of the energy barrier and the dominant factor of the
tunnelling, and hence, it determines the magnetic behavior of
these systems. A crucial landmark for chemistry, for techno-
logical devices as well as for fundamental investigations, would
be the control and tuning of the magnetic anisotropy.

From a theoretical point of view, the understanding of the
electronic and the structural factors governing the anisotropy
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is of primary importance. The first attempts to calculate
anisotropy parameters from first principles are less than 10
years old. Most of the studies concern one component density
functional theory (DFT) based calculations with a perturba-
tive inclusion of spin-orbit (SO) coupling (see the ORCA6-11

and NRLMOL12-16 code). Very recently, a two-component
DFT method17 has been implemented in the ReSpect code18

and used to study the zero field splittings (ZFS) of several
mononuclear complexes. For polynuclear systems, good
agreement with experimental values was obtained using the
NRLMOL method for the calculated D and E ZFS param-
eters of the Fe4, Mn12, and Mn6-based SMMs.19,20 Neverthe-
less, only the global ZFS parameters of the SMMs in its
ground spin states (i.e., the parameters of the giant spin
Hamiltonian) were accessible within the DFT scheme. The
understanding and control of the property requires studying
the local anisotropies of each metal ion and the anisotropies
of their interactions. To extract such quantities, the multide-
terminantal descriptions are mandatory, and the excited spin
states should be calculated. Wave function based calculations
can provide this accurate description of the multidetermi-
nantal character of SMMs wave functions, but only few
works dealt with the extraction of ZFS parameters using
wave function based computational schemes. One can
mention the pioneering work of Michl21 involving a pertur-
bative treatment of spin dependent terms and the work done
by Ågren et al.22 based on the linear response theory. Among
the most popular methods, we quote the ones implemented
in the ORCA6 and MOLCAS23 codes. Both codes provide
accurate results on the mono- and polynuclear nuclear
complexes.7-11,24-28

In the present paper, spin-orbit restricted active space state
interaction (SO-RASSI) calculations on mononuclear species
are performed in order to determine the energies and wave
functions of the lowest electronic states. These solutions are
then used to build and to calculate the matrix elements of
the effective Hamiltonian that best fits the ab initio results.
Since this Hamiltonian matrix can be compared to the
commonly used model Hamiltonian matrix, the procedure
provides a rational way to check (and eventually to improve)
the ability of the phenomenological Hamiltonian to describe
accurately the magnetic anisotropy. The same philosophy
has been applied to many magnetic systems in order to
measure the different contributions to the magnetic exchange
integral29,30 and to rationally parametrize t-J models,31,32

double exchange models,33-39 and spin Hamiltonians.40 In
all cases, the procedure has shown the validity and the
application limits of the phenomenological Hamiltonians that
are commonly used to interpret the experimental data or to
understand the physics of the system under study. The
comparison has led to different improvements of the model
Hamiltonians, such as the inclusion of a priori neglected
exchange interactions,31 and the three- or four-body
operators41,42 that are crucial for the reproduction of the
magnetic properties of the systems. Concerning the study
of magnetic anisotropy, the effective Hamiltonian theory is
particularly promising for polynuclear species given the
uncertainties in the proper definition of the model Hamil-
tonian for these systems.43-45 In this work, we use the

effective Hamiltonian theory to extract the anisotropic spin
Hamiltonian from the first principles for mononuclear
species, laying in this way, the foundation for the study of
the more complicated polynuclear systems. We show
how the magnetic anisotropy axes can be determined, and
that the rigorous computational extraction of the anisotropy
parameters for the high spin d7 configuration requires the
construction of an effective Hamiltonian.

2. Methodological Study

2.1. Description of the Compounds and Computational
Information. Three Ni(II) complexes and one Co(II) complex
were studied. [Ni(HIM2-Py)2 NO3]+ (1, see Figure 1) and
[Ni(glycoligand)]2+ (2, see Figure 2) show a quasi-octahedral
coordination of Ni(II), while [Ni(iPrtacn)Cl2] (3, see Figure
3) has a pentacoordinated Ni(II) ion in an arrangement of
the ligands that is intermediate between a trigonal bipyramid
and a square pyramid. The geometries have been taken from
crystallographic data and experimental information about the
structure, high-field, high-frequency electron paramagnetic
resonance (HF-HFEPR) and frequency domain magnetic
resonance spectroscopy (FDMRS) data can be found in refs
46-48 for each compound, respectively. In order to reduce
the computational cost for 1, the CH3 groups, which are
geometrically distant from the metal ion, have been modeled

Figure 1. The [Ni(HIM2-Py)2NO3]+] complex (1) and its
proper magnetic axes. The magnetic z-axis has an angle of
12.7° with the normal of the plane formed by Ni and by the
NO3

- ligand.

Figure 2. The [Ni(glycoligand)]2+] complex (2) and its proper
magnetic axes. The magnetic z-axis has an angle of 9.5° with
the 2.04 Å Ni-N bond.
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by H atoms. Owing to the local character of the ZFS
property, this simplification should not affect the results. The
local geometry of Co(II) in [Co(PPh3)2Cl2]

49,50 (4, see Figure
4), is a distorted tetrahedron.

The electronic structure of the complexes have been
studied using the SO-RASSI method51,52 implemented in
MOLCAS 7. The scalar relativistic effects are included
through the use of the Douglas-Kroll-Hess Hamiltonian,53,54

and the SO effects are treated within the one-component
formalism through the so-called spin-orbit state interaction
(SO-SI) technique using the atomic mean-field approximation
(AMFI). The method is a two-step procedure based on the
idea that electron-correlation and SO effects are largely
decoupled. The first step involves a complete active space
self-consistent field (CASSCF) calculation to treat nondy-
namic correlations followed by the introduction of dynamic
correlation effects through the evaluation of the single and
double excitation contributions in a second-order perturbative
manner (CASPT2). The second step calculates the SO
interactions between the CASSCF states. The CASSCF
diagonal elements of the so-obtained SO-SI matrix are
substituted by the CASPT2 energies in order to take into
account the main dynamic correlation effects.55,56 In this
method, the dipole-spin coupling is neglected. Contrarily to
what was assumed for several decades, it has recently been
shown that for Mn(III) complexes, the spin-spin part is not
negligible for a quantitative description of the anisotropy.22,10

In the considered Ni(II) and Co(II) complexes, the contribu-

tion of the SO interaction to the anisotropy is relatively
important, and the number of unpaired electrons is small.
Hence, the spin-spin part is expected to bring a minor
contribution to the overall anisotropy.

Two different active spaces have been considered in the
CASSCF calculations. The minimal active space has five
TM-3d (TM ) Ni,Co) orbitals and an extra set of five TM-
d′ orbitals to accurately describe the radial electron correla-
tion. This gives a CAS(8,10) and CAS(7,10) for the Ni- and
Co-based compounds, respectively. The second, extended
active space also includes some doubly occupied σ ligand-
metal bonding orbitals. These orbitals essentially represent
the nonbonding pairs of the atoms coordinated to the metal
ion. Adding the orbitals with the strongest TM-ligand
interaction leads to CAS(12,12) and CAS(13,13) for Ni- and
Co-based compounds, respectively. Molecular orbitals have
been optimized in an average way for all states belonging
to a given spin multiplicity. The following all-electron ANO-
RCC basis sets57 are used: Ni and Co (6s 5p 4d 2f), Cl and
P (5s 4p 1d), coordinated N (4s 3p 1d), other N (3s 2p 1d),
O (4s 3p 1d), C (3s 2p), and H (2s).

The IP-EA shift has been set to zero for the nickel
complexes since the states which are strongly coupled
through the SO interaction are the lowest triplets, which have
the same number of unpaired electrons, and to 0.25 for the
cobalt one for which the excited doublets were suspected to
play an important role. The minimal imaginary shift neces-
sary in order to remove intruder states has been introduced
in all cases (0.05 for 1 and 2, 0.10 for 3, and 0.20 au for 4).

2.2. Dependence of the Zero-Field Splitting on the
Computational Degrees of Freedom of the SO-RASSI
Method. In addition to the usual computational degrees of
freedom, such as the number of basis functions and the size
of the active space, the outcomes of the SO-RASSI calcula-
tions also depend on the number of states included in the
state interaction and the choice of the diagonal elements in
the SO matrix: CASSCF or CASPT2 energies. To establish
the precision of the SO-RASSI method, we explored these
computational degrees of freedom in 1 and 4. We concen-
trated on three aspects: (i) the number of excited states, which
are included in the SO-SI space. Here a balance should be
found between the computational cost of calculating many
excited states and the influence of the matrix elements on
the final result; (ii) The size of the active space, i.e. the effect
of the inclusion of the ligand-to-metal charge transfer
excitations in the CASSCF wave function affect the low-
energy spectrum; and (iii) the comparison of the results using
CASSCF or CASPT2 energies on the diagonal of the SO-SI
matrix.

The dependence of the results to the number of states
considered in the SO-SI calculations is studied for com-
pounds 1 and 4. The number of states has progressively been
reduced starting from the complete TM-3dn manifold to
finally four states only. The selection of the states is based
on an energy criterion, and states which are close in energy
are removed from the SO-SI space simultaneously. In both
cases, the smallest calculations (four states) couples the
ground state with the first three excited states. These three
states correspond to the three degenerate spatial components

Figure 3. The [Ni(iPrtacn)Cl2] complex (3) and its proper
magnetic axes. The magnetic z-axis has an angle of 26.0°
with the Cl-N-Cl plane.

Figure 4. The [Co(PPh3)2Cl2] (Ph ) phenyl) complex (4) and
its proper magnetic axes.
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of the first excited state in an ideal octahedral (Ni) or
tetrahedral (Co) coordination. A further reduction of the SO-
SI space is physically not grounded and has not been
performed.

The d8 configuration of the Ni(II) ion contains 25 spin
free states, 10 triplets, and 15 singlets. Due to an intruder
state problem, the CASPT2 energy of the highest singlet state
could not be obtained with a high enough precision,
hence 14 singlets have been considered in the SO calculation.
Since this last singlet is very high in energy, its neglect is
not expected to have any significant influence on the ZFS
parameters. The Co(II)-d7 configuration contains 10 quadru-
plets and 40 doublets. In this case, the energetic decomposi-
tion is not trivial since, except for the seven first quadruplet
states which are well separated in energy from the others,
all the other excited states are close in energy. We have,
therefore, only compared the results obtained for the four
and seven quadruplets and the complete collection of the 50
states of the configuration.

Table 1 compares the computed relative energies of the
MS components (or their combinations) of the ground state
of 1 to the experimental ones for different SO-SI spaces.
Table 2 lists the energy difference of the lowest two Kramers
doublets for 4. In all cases, the states are labelled using the
main MS components (or their combinations) appearing in
the SO wave functions computed in the proper magnetic axes
frame (the determination of this frame is discussed in Section
3). FDMRS transition energies are available for compound

1, while the transition energy has been calculated from the
ZFS parameters derived from the EPR data for 4.

From the results reported in Tables 1 and 2, several
conclusions can be inferred:

(i) In the Ni compounds, the lowest excited states of the
same spin multiplicity as the ground state, i.e., the three
lowest excited triplets, make the main contribution to ZFS.
The analysis of the physical content of the wave functions
of these SO excited states rationalizes their predominant role.
They all result from a single electron replacement in the TM-
3d orbitals with respect to the fundamental state. These
excited states are, therefore, not only low in energy but also
strongly coupled through SO coupling with the ground state.
For the quasi-tetrahedrally coordinated Co complex, the SO-
SI space cannot be restricted to the lowest four quartet states,
which arise from the 4A2 and 4T2 states of the perfect
tetrahedron. The three excited states arising from the 4T1 state
are so low in energy that they have a non-negligible
interaction via the SO operator with the ground state,
notwithstanding the marked contribution of the doubly
excited configurations in the wave functions of these states.

(ii) At first sight, it may be surprising that the best
agreement with experiment is obtained for the smaller SO-
SI spaces (4T for 1 and 7Q for 4), and that the inclusion of
more states does not improve the result or even worsen it.
However, the use of the state-average CASSCF orbitals to
obtain the higher excited states affects the description of the
lowest states. Indeed, in these averaged orbital sets, these
states are less precisely described than in a set of orbitals
optimized for the lowest states only. Hence, the precision
that is gained by enlarging the SO-SI space is lost by the
more approximate description of the lowest excited states.
This is a limitation of the CASPT2/SO-SI methodology,
enlarging the SI space does not guarantee a convergence of
the results. Hence, we would recommend to optimize the
orbitals in an average way for only those states that strongly
interact through the SO coupling with the ground state.

(iii) Reasonable results can be obtained with a relatively
small computational effort. Qualitative agreement with
experiment is observed for the CASSCF wave functions and
the energies calculated with the smaller active space,
averaging for the lowest electronic states only. The incor-
poration of dynamic correlation effects (CASPT2) moder-
ately modifies the obtained results. For a quantitative
agreement with experiment, it is necessary to extend the
active space to those ligand orbitals that have sizable tails
on the metal center. This shows that the ligand-to-metal
charge transfer (LMCT) configurations can play an important
role in the magnetic anisotropy and should be variationally
described. The active space should be chosen in such a way
that it does not only include the radial electron correlation
(smaller active space) but also the nondynamical correlation
effects associated to the LMCT configurations.

3. Theory and Results

3.1. General Approach. The model spin Hamiltonian of
a mononuclear anisotropic complex in the absence of a
magnetic field is given by the following expression:

Table 1. Energy Differences (in cm-1) of the Spin-Orbit
Splitted States Arising from the Fundamental Triplet State
of 1 as Function of the Number of Spin-Orbit Coupled
Statesa

∆E1 ∆E2

number of
states in SI

active
space CASSCF CASPT2 CASSCF CASPT2

10T, 14S (8,10) 15.1 11.6 13.2 10.1
10T, 9S (8,10) 17.1 14.2 14.5 11.7
7T, 2S (8,10) 14.1 10.7 12.4 9.3
4T (8,10) 14.8 13.0 13.0 11.3
4T (12,12) 12.9 11.4 11.3 9.8
FDMRS46 10.3 ( 0.1 9.7 ( 0.1

a ∆E1 ) E(|1,0〉) - E(|1,1〉 - |1,-1〉) and ∆E2 ) E(|1,0〉)
- E(|1,1〉 + |1,-1〉). The number and spin multiplicity of the
coupled states are indicated as nT(triplets) and mS(singlets).

Table 2. Energy Differences (in cm-1) of the Spin-Orbit
Splitted States Arising from the Fundamental Quartet State
of 4 as Function of the Number of Spin-Orbit Coupled
Statesa

∆E

number of states in SI active space CASSCF CASPT2

10Q, 40D (7,10) 36.0 42.6
7Q (7,10) 29.0 35.8
7Q (13,13) 22.7 29.7
4Q (7,10) 17.9 26.0
4Q (13,13) 14.4 21.6
HF-HFEPR49,50 29.8

a ∆E is the absolute value of E(|3/2,(3/2〉) - E(|3/2,(1/2). The
number and spin multiplicity of the coupled states are indicated as
nQ (quartets) and mD (doublets).
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where Ŝ is the spin operator, and Dc is the second-order
anisotropy tensor. For more than three unpaired electrons,
even higher-order terms can be considered in the model
Hamiltonian.43 These higher-order terms will not be con-
sidered here since the complexes studied are limited to two
or three unpaired electrons only. The projections of the lowest
SO states onto the |S,MS〉 states constitute the basis functions
of the model space S0 on which this model Hamiltonian is
spanned. The SO coupling results in a mixing of the MS

components and, therefore, in a removal of their degeneracy.
The procedure to extract the ZFS tensor, which is proposed
here, uses the effective Hamiltonian theory.58,59 This theory
is based on the existence of a biunivocal relation between a
model space S0 and a target space S constituted of those
eigenstates Ψi of the all-electron Hamiltonian that should
be accurately reproduced by the model Hamiltonian. The
effective Hamiltonian (which will be later compared to the
model Hamiltonian) may be written as

where |Ψ̃i〉 are the orthogonalized projections of the |Ψi〉
states onto S0, and Ei are their ab initio energies. The
projections were orthogonalized by an S-1/2 orthonormal-
ization (where S is the overlap matrix) as proposed by des
Cloizeaux.59 This formalism guarantees that the eigenvalues
of the model Hamiltonian are the eigenvalues of the
all-electron Hamiltonian, and that its eigenfunctions are the
orthogonalized projections |Ψ̃i〉 of the eigenfunctions of the
all-electron Hamiltonian onto the model space, such that:

The norm of these projections provides a rational way to
check the relevance of the model Hamiltonian to be extracted.
If the norm of the projection is small, then important physics
are missing in the model space, and one should reconsider
the definition of the model Hamiltonian. Therefore, the
method provides a rigorous and controlled way to extract
the model Hamiltonian. Another advantage of the use of the
effective Hamiltonian theory resides in the possibility to
determine the principal axes of the ZFS tensor. Indeed, the
expressions of both the eigenfunctions of the all-electron
Hamiltonian and the matrix elements of the effective
Hamiltonian defined in eq 2 depend on the axes frame. An
identification of these terms with those of the analytical
matrix of the model Hamiltonian expressed in the general
case of a nondiagonal tensor leads to a complete determi-
nation of the Dc components in an arbitrary frame. The proper
magnetic axes are then determined from the diagonalization
of the ZFS tensor. In comparison to the perturbative approach
of calculating the ZFS tensor components, the effective
Hamiltonian theory enables one to identify as high-order
terms as required, since the interactions of the model
Hamiltonian (and therefore its operators) are not guessed a
priori. To recover the results of the effective Hamiltonian
theory, one should expand the perturbation until an infinite
order.

3.2. Extraction of the ZFS Parameters from the
Effective Hamiltonian Theory. The ZFS tensor is only
diagonal in the magnetic anisotropy axes frame. In the
following development, its matrix representation in an
arbitrary frame will be denoted as

The elements of the analytical matrix of Ĥmod (eq 1) are
functions of the different components Dij, including the
extradiagonal elements of the ZFS tensor. Using |1,-1〉, |1,0〉,
and |1,1〉 as basis functions, the matrix elements
〈S,MS|Ĥmod|S,M′S〉 for the high spin d8 configuration are

The next step is the construction of the effective Hamil-
tonian based on the ab initio calculations. We take here, as
an example, the CAS(12,12)PT2 results of 1 with the 4T
SO-SI space (one but last row in Table 1). The projections
of the eigenfunctions all electron Hamiltonian on the model
space at this level of calculation are

Using these projections and the corresponding energy
eigenvalues (E1 ) 0.000, E2 ) 1.529, E3 ) 11.369 cm-1),
the application of eq 2 leads to the following numerical
effective Hamiltonian:

Before calculating the ZFS tensor D, we observe that there
is a perfect one-to-one correspondence of the matrix elements
of the effective Hamiltonian derived from the ab initio
calculations and those of the model Hamiltonian of eq 5.
The effective Hamiltonian does not present extra interaction
to those expected from the model Hamiltonian. Combined
with the large norm of the projections, we conclude that the
model Hamiltonian (eq 1) perfectly describes the ZFS in this
case. The same behavior is found for the other Ni(II)
compounds. The comparison of eqs 5 and 6 leads to six linear
independent equations in terms of the Dij, which determine
uniquely the ZFS tensor. The full expression of the numerical
effective Hamiltonians for 2 and 3 can be found in the

Ĥmod ) Ŝ · Dc · Ŝ (1)

Ĥeff ) ∑
i

|Ψ̃i〉Ei〈Ψ̃i| (2)

Ĥeff|Ψ̃i〉 ) Ei|Ψ̃i〉 (3)

D ) (D11 D12 D13

D12 D22 D23

D13 D23 D33
) (4)

Ĥmod |1,-1〉 |1, 0〉 |1, 1〉

〈1,-1|
1
2

(D11 + D22) + D33 -
√2
2

(D13 + iD23)
1
2

(D11 - D22 + 2iD12)

〈1, 0| -
√2
2

(D13 - iD23) D11 + D22
√2
2

(D13 + iD23)

〈1, 1|
1
2

(D11 - D22 - 2iD12)
√2
2

(D13 - iD23)
1
2

(D11 + D22) + D33

(5)

|Ψ̃1〉 ) (0.045 + 0.092i)|1,-1〉 + (-0.668 + 0.724i)|1, 0〉 +
(0.096 + 0.037i)|1, 1〉

|Ψ̃2〉 ) (-0.395 + 0.578i)|1,-1〉 + (0.062 + 0.088i)|1, 0〉 +
(-0.678 + 0.173i)|1, 1〉

|Ψ̃3〉 ) (0.701 + 0.026i)|1,-1〉 + (-0.090 - 0.037i)|1, 0〉 +
(-0.519 - 0.472i)|1, 1〉

|1,-1〉 |1, 0〉 |1, 1〉
〈1,-1| 6.386 -0.690 + 0.376i -3.734 + 3.134i
〈1, 0| -0.690 - 0.376i 0.125 0.690 - 0.376i
〈1, 1| -3.734 - 3.134i 0.690 + 0.376i 6.386

(6)
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Supporting Information. From eqs 5 and 6 we derive the values of the D tensor of 1 in the original coordinates frame.

The D tensors for 2 and 3 are given in the Supporting Information. The diagonalization of D gives us the transformation
matrix to rotate the coordinates frame such that the axes coincide with the magnetic one. These axes are indicated in the
Figures 1-3 for the complexes studied here. Note that the orientation of the magnetic axes is almost independent of the
computational degrees of freedom, unlike the energy differences between the lowest spin-orbit states, as shown in the previous
section. Furthermore, it allows us to determine the commonly used ZFS parameters for the axial (D ) (3/2)Dzz) and the
rhombic (E ) (1/2)(Dxx - Dyy) > 0) anisotropy. In the general case presented here, (Tr D * 0), D and E can be derived from

In practice, D33 is chosen as the diagonal element that maximizes the spacing with respect to the other two diagonal elements.
D11 and D22 are identified by the convention that E is always positive. The resulting anisotropy parameters for 1-3 are listed
in Table 3 and will be discussed in the next section.

For the Ni(II) complexes, the ZFS parameters can, of course, also be extracted from the spectrum only without going
through the construction of the effective Hamiltonian. One should notice, however, that the magnetic anisotropy axes could
not be determined, and that no information about the character of the wave functions can be used.

3.3. Extraction of ZFS Parameters for the d7 Configuration. Spin-orbit interaction splits the quartet ground state of
the high spin d7 configuration into two Kramers doublets. Hence, the information from the spectrum is obviously not enough
to determine the ZFS parameters D and E. It is not even possible to determine the sign of the axial anisotropy, except for the
case when the magnetic axes are known and the wave function is available. This is, however, generally not the case, and the
construction of an effective Hamiltonian is the preferred route toward a full description of the ZFS. Following the previously
outlined procedure, we first calculate the matrix elements of the model Hamiltonian in the |S,MS〉 basis for the d7 configuration:

Ĥmod |32,-3
2〉 |32 - 1

2〉 |32,
1
2〉 |32,

3
2〉

〈3
2

,-3
2 | 3

4(D11 + D22) +
9
4

D33 -√3(D13 + iD23)
√3
2

(D11 - D22 + 2iD12) 0

〈3
2

,-1
2 | -√3(D13 - iD23)

7
4

(D11 + D22) +
1
4

D33 0 √3
2

(D11 - D22 + 2iD12)

〈3
2

,
1
2 | √3

2
(D11 - D22 - 2iD12) 0

7
4

(D11 + D22) +
1
4

D33 √3(D13 + iD23)

〈3
2

,
3
2 | 0 √3

2
(D11 - D22 - 2iD12) √3(D13 - iD23)

3
4

(D11 + D22) +
9
4

D33

(9)

Subsequently, the effective Hamiltonian is constructed from the ab initio energies and wave functions. The numerical
expression of this Hamiltonian can be found in the Supporting Information. We note again that the model Hamiltonian perfectly
fits the effective Hamiltonian, and hence, the full D tensor can be extracted. The magnetic axes are shown in Figure 4, and
the ZFS parameters are listed in Table 3. The appearance of off-diagonal terms in the effective Hamiltonian suggests that the
eigenfunctions can have contributions from determinants with different MS values. This implies that MS is not a good quantum
number anymore. Nevertheless, the off-diagonal terms that cause the interaction between the determinants with different MS

values are strictly zero in the proper magnetic frame under the condition of no rhombic distortion. In the case of 4, the
rhombic distortions are small (E/|D| ) 0.08), and the wave functions that describe the four lowest states have almost pure MS

) ( 1/2 or MS ) ( 3/2 character.
3.4. Magneto-Structural Relations for D and E. Table 3 compares the calculated anisotropy parameters with the

experimental values of these parameters extracted from HF-HFEPR data.46-49 While the agreement with experiment is excellent
for 1, 3, and 4, the calculated D-value for 2 deviates by approximately 4 cm-1. The smallness of the anisotropy of this
complex may be the origin of the difference between theory and experiment. The SO-SI methodology may have reached its
numerical precision for this complex. This is subject to further study on other complexes with small anisotropy.

A less equally important question is whether it can be established why 1 has a large negative D, 2 a very small D, and 3
a large positive D. For this purpose, we study the effect of different distortions on the anisotropy in the three Ni(II) complexes
using CASSCF energies and the 4T SO-SI space. The starting point for the decomposition is the isotropic, perfect octahedron
of the model compound [Ni(NCH)6]2+. The first coordination sphere of complex 1 shows two major distortions in the xy-plane.
The first distortion is a cis elongation, and the second is an angular distortion in which one N-Ni-N angle increases to

D ) (-3.671 3.134 0.976
3.134 3.797 -0.532
0.976 -0.532 6.323

) (7)

D ) D33 - 1
2

(D11 + D22)

E ) 1
2

(D11 - D22) > 0
(8)
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100° and the opposite angle reduces to 60°. Other smaller
distortions complete the route from perfect octahedron to
real geometry. The subsequent application of these three
distortions gives D ) +0.2 cm-1 (xy-plane elongation),
D ) -4.9 cm-1 (after adding the angular distortion), and
D ) -9.6 cm-1 for the complete distortion. Hence, the
largest effect on the anisotropy is found to be the xy-plane
angular distortion, while the combination of the smaller
angular distortions significantly enhances the D parameter.

The geometry of 2 is close to octahedral, showing an
elongation along the positive z-axis and an angular distortion
of both axial ligands in cis mode. Applying these distortions
on the model complex gives D ) +3.0 cm-1 for the
elongation and D ) -4.5 cm-1 for the axial distortion. The
application of both distortions simultaneously gives D )
+6.1 cm-1, close to the value calculated for the real complex.

Complex 3 is pentacoordinated. Hence, the first obvious
distortion is the removal of one of the ligands from the model
complex. The resulting square pyramid leads to a large
positive D of +16.3 cm-1, while the trigonal bypiramid leads
to a first-order angular momentum in the ground state, and
the model Hamiltonian, which only contains spin operators,
no longer applies. On the way to the real geometry, we apply
an elongation of two equatorial cis ligands on the square
pyramid, reducing the D-value to +11.2 cm-1. The next
distortion that should be applied is an angular out-of-plane
distortion of 60° from one the equatorial ligands. This causes,
again, a near degeneracy and an appearance of a first-order
angular momentum. Alternatively, we constructed a
[Ni(NCH)5]2+ model with the same geometry as the first
coordination sphere as the real complex 3. This resulted in
a D-value of +24.4 cm-1. After replacing two NCH groups
by Cl ligands, as in the real complex, D further increases to
+27.7 cm-1. The only remaining difference with the real
complex is the replacement of the three NCH ligands with
iPrtacn, which reduces the anisotropy to D ) +20 cm-1.
This demonstrates the important interplay between the
geometry and the σ-donating character of the ligands in the
anisotropy of the complex, whose character is mainly
determined by its resemblance to the square pyramid.

4. Conclusions

From the wave functions and the energies of the all-electron
Hamiltonian, effective Hamiltonian theory rigorously deter-
mines the anisotropic spin Hamiltonian of anisotropic mono-
metallic compounds. The method gives access to all the

components of the ZFS tensor and, therefore, leads to the
extraction of both the axial D and the rhombic E anisotropy
parameters and to the proper magnetic axes frame.

The advantages of the proposed method of extraction are
most obvious for the high spin Co(II) compound for which
the anisotropy parameters cannot be extracted from the
relative energies of the lowest spin-orbit states.

The extracted D and E parameters are in good agreement
with the HF-HFEPR data for large magnetic parameters,
establishing the precision of the SO-SI method to describe
single-ion anisotropy. The main conclusions of the method-
ological study are that the best results are obtained with wave
functions and energies obtained from an enlarged active
space that includes ligand orbitals.

Finally, the effective Hamiltonian theory permits the
accuracy of the model Hamiltonian to reproduce the physics
of the studied systems to be checked. In the present case,
the validity of the usual Hamiltonian is confirmed for the d7

and the d8 configurations of monometallic complexes. The
procedure is now being applied to other dn configurations
and to polymetallic systems in order to extract the interac-
tions of both multispin and giant spin Hamiltonians.
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(39) Bastardis, R.; Guihéry, N.; de Graaf, C. Phys. ReV. B:
Condens. Matter 2008, 77, 054426.

(40) de P. R. Moreira, I.; Suaud, N.; Guihéry, N.; Malrieu, J. P.;
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Abstract: A coupled-perturbed Kohn-Sham (CPKS) scheme for calculating second-order
magnetic properties has been developed for the case of general occupied-orbital-dependent
(OOD) exchange-correlation functionals involving the exact-exchange energy density. The origin
of the coupling terms in the functional derivatives of OOD functionals with respect to the orbitals
has been thoroughly analyzed, and general expressions for the resulting coupling terms have
been obtained. The generalized CPKS scheme thus obtained has been implemented within the
MAG-ReSpect code and tested in calculations of electronic g-tensors with local hybrid functionals.
Compared to previously tested global hybrids, like B3LYP, thermochemically optimized local
hybrids provide only little to moderate improvement for test sets of main-group radicals and
paramagnetic transition-metal complexes. Closer analyses point to possible areas in which the
fundamentally more flexible local hybrids may be improved for the property at hand.

1. Introduction

Accurate prediction of magnetic resonance (MR) parameters
is an important field of modern quantum chemistry. Examples
include electronic g-tensors, hyperfine coupling tensors or
zero-field splittings in electron paramagnetic resonance
(EPR), and chemical shifts or spin-spin coupling constants
in nuclear magnetic resonance (NMR). The past 20 years
have seen tremendous success of new computational methods
based on both post-Hartree-Fock methods (multiconfigu-
ration SCF, many-body perturbation theory, coupled cluster,
etc.) and Kohn-Sham (KS) density functional theory
(DFT).1 The advantage of DFT is its often an excellent
compromise between the accuracy and the computational
efficiency for larger systems. The underlying exchange-
correlation (xc) functional is known to be the principal factor
determining the accuracy of a DFT calculation. A particular
place is occupied by the so-called hybrid xc functionals first
introduced by Becke,2,3 which include a constant, fractional
admixture of the exact-exchange (EXX) energy:

where

and Ẽxc
DFT[F,∇F, ...] is some “conventional” density functional

contribution based, for instance, on the local (spin) density
approximation (LDA, LSDA),4-7 the generalized gradient
approximation (GGA),8-12 or the meta-GGA:13,14

These global hybrid functionals have been very successful
for various properties (in particular also for MR parameters1,15).
However, a number of limitations associated with global
hybrids are known. In particular, it is usually not possible
to find a unique constant a0 for the EXX admixture to obtain
optimum accuracy for different properties as well as for
different systems. For example, accurate prediction of the
atomization energies requires relatively modest EXX ad-
mixtures of about 0.16-0.30. Larger values are required,
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e.g., for reaction barriers.16 Similar divergences are known
for many properties.15,17-20 For example, GGA functionals
without EXX admixture provide accurate main group g-
tensors,21 whereas relatively large EXX admixtures are
required for accurate g-tensors of transition-metal com-
plexes.17,18 There is, thus, clearly a need for improved
exchange-correlation functionals not exclusively but also for
MR parameters. A new class of functionals that has shown
promise for thermochemistry and for reaction barriers (and
for nuclear shieldings within an approximate optimized
effective potential (OEP) scheme)22 are so-called local hybrid
functionals.23-32 In contrast to the constant EXX admixture
of global hybrids, eq 1, local hybrids include EXX in a
position-dependent way, governed by a “local mixing func-
tion” (LMF), γ:

where εx, σ
exact is the exact-exchange energy density:

whose integral over the entire real space is the alpha- or beta-
spin Ex

exact (cf. eq 2). Note that in this paper we use the symbol
“γ” rather than “g” for the LMF (see refs 22, 26-28, 32) to
avoid any confusion with the “g-tensor”. The performance
of local hybrids is determined by the LMF as well as by the
choice of density functional exchange and correlation
contributions. We have been able to construct simple local
hybrids, so far with only one or two semiempirical param-
eters and mixing only local and exact exchange, which are
successful simultaneously for thermochemistry and
barriers.22,26-28,32

A first self-consistent application to MR parameters
employed the localized Hartree-Fock (LHF) approxima-
tion33 to the OEP34,35 to transform the nonlocal and non-
multiplicative potential of local hybrids into a local and
multiplicative potential (localized-local hybrid potentials).36

This allowed the use of an uncoupled KS perturbation
scheme to obtain nuclear shieldings.22 While the first results
were encouraging, comparisons of a similar LHF-based
scheme37 with a basis-set expansion OEP method38 for global
hybrids indicated discrepancies between the results of the
two approaches. This is possibly due to inaccuracies of the
virtual orbitals obtained with the LHF approximation. Yet,
currently, there are still problems with the numerical stability
of basis-set OEP expansions and use of the, possibly
necessary, very large basis sets limits the efficiency.39,40

While the OEP is the correct way to obtain local and
multiplicative potentials from orbital-dependent functionals,
most self-consistent implementations of global hybrid func-
tionals omit the OEP transformation step and use directly
the nonlocal Hartree-Fock-type potential obtained by taking
straightforward functional derivatives with respect to the
orbitals (FDOs) followed by the substitution:

in the corresponding one-electron Kohn-Sham equations.
This is sometimes termed “generalized KS approach”.41,42

In calculations of second-order magnetic properties (as are
most MR parameters), the nonlocal exchange potential leads
to coupling terms, and coupled-perturbed Kohn-Sham
(CPKS) equations have to be solved iteratively.43-45

This is well-established for global hybrids but has, so far,
not been reported for local hybrids or for other comparably
complex occupied-orbital-dependent (OOD) functionals46,47

(also often termed “hyper-GGA functionals”24,48,49). We fill
this gap here by reporting a CPKS scheme for a generalized
OOD functional. The scheme has been implemented with
local hybrid functionals and is tested for electronic g-tensors
of main-group radicals and transition-metal complexes.

2. Local Hybrids, Generalized OOD
Functionals and Their Potentials

Local hybrids are sometimes considered to be “hyper-GGA”
functionals. From an implementation point of view, we prefer
to assign them to the general class of OOD functionals ( see
Introduction):

where

is the noninteracting local kinetic energy density. The extra
variable τσ leads to additional nonmultiplicative terms
in the corresponding FDOs (-(1/2){[∇(∂εxc/∂τσ)] ·∇ +
(∂εxc/∂τσ)∇2} �kσ). However, in contrast to the exact-exchange
operator, which is defined by its action on an arbitrary one-
particle function ψ(r) as

neither the permutation of spatial variables (r,r′) nor the
integration over r′ are involved, and therefore, no additional
complications arise for magnetic linear-response properties
(see below). In some OOD functionals (eq 7), the exact-
exchange energy density appears in a more complicated
nonlinear form, for example, as an ingredient of the local
mixing function γ (cf. eq 4) in a recent local hybrid.31 These
types of subtle differences between various OOD functionals
regarding their ingredients affect not only their FDOs but
also potentially the evaluation of the linear response to a
magnetic perturbation (see below). This will be taken into
account in the following discussion.
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3. Electronic g-Tensors and Generalized
CPKS Scheme

The CPKS scheme will now be developed for the particular
case of electronic g-tensors when treated with a second-order
perturbation theory on top of a nonrelativistic one-component
SCF calculation. We will report the g-shift tensor, ∆g, which
is the correction to the isotropic free-electron g-tensor,

where ge ) 2.002319... Cartesian components (u, V ) x, y,
z) of ∆g are defined as

(we employ atomic units based on the SI system with the
Bohr magneton µB ) 1/2), where E is the energy of the
molecular system in the magnetic field B, and S is its
effective spin. Therefore, one has to look for terms bilinear
in B and S. Perturbational treatment of spin-orbit coupling
with a Breit-Pauli-type Hamiltonian (or related quasirela-
tivistic Hamiltonians) leads to a second-order perturbation
scheme to compute ∆g. Its detailed description can be found
elsewhere21,45,50 (see also refs 43, 44, 51). Here, we restrict
ourselves only to the points relevant to derive the CPKS
scheme for OOD functionals. At Breit-Pauli level, the
g-shift ∆g consists of three terms:

of which the “paramagnetic” second-order spin-orbit/orbital
Zeeman cross term, ∆gSO/OZ, usually dominates. The remain-
ing terms are due to the relativistic mass correction, ∆gRMC,
and the one-electron part of the gauge correction. These are
calculated as “first-order properties” (expectation values, see
eqs 7 and 9 in ref 21 for details). We will, in the following,
be concerned exclusively with the Cartesian components u,
V of the second-order ∆gSO/OZ. These are evaluated as

where R is the fine structure constant (R ) 1/137.035999...),
and ĤSO, V denotes the V component of the spatial part of the
spin-free spin-orbit (SO) Hamiltonian (cf. eqs 3 and 5 of ref
21).

Next,

where l̂O, u is a spatial component of the orbital Zeeman
operator

(subscript “O” denotes a common gauge origin at point RO,
see Computational Details below), and ω̂ u

1 is a “response”

operator, which may vanish or persist depending on the
exchange-correlation functional employed (see below). As
is seen from eq 13, ∆gSO/OZ arises from the interplay between
two perturbations: spin-orbit coupling and orbital Zeeman
operator (both operators are purely imaginary). According
to the interchange theorem of double-perturbation theory,52

one may evaluate a perturbed wave function (a KS deter-
minant in the present case) up to first order in one of the
perturbations, followed by computation of matrix elements
of the second perturbation with the first-order perturbed and
unperturbed wave functions and subtraction of zero-order
terms. Translating this into one-electron language in the
context of a KS determinant and using conveniently the
orbital Zeeman operator (external magnetic field) as the initial
perturbation, we rewrite eq 13 as

where �kσ
1, u (σ ) R, �) is the first-order correction (linear

response) to the occupied orbital �kσ (below we omit
subscript σ for notational simplicity where it is not crucial;
a tilde will always indicate the perturbed quantities):

In case of an unperturbed orbital �k and a semilocal
exchange-correlation potential v̂xc of LSDA, GGA, or meta-
GGA type (the latter may be viewed as an OOD functional
(eq 7) without dependence on εx

exact), operator ω̂ u
1 vanishes

in eq 14, and f̂O,u ) l̂O,u. Then, the linear response coefficients
�ak

u of eq 18 (cf. eqs 14 and 15) are found straightforwardly
in one step as

If a global hybrid nonlocal operator is employed, then

where ω̂ u
1 ≡ a0 v̂x, u

exact, 1, and v̂x, u
exact, 1 is the linear response from

the exact-exchange operator (eq 9):

When an external magnetic field is switched on, the exact-
exchange operator (eq 9) is modified, as it depends on the
occupied orbitals. Thus, substituting the complex perturbed
orbitals �̃k

u, eq 17 into eq 9, one obtains
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|ĤSO,V|�k�

1,u〉] (16)

�kf
OZ,u

�̃k
u; �̃k

u ) �k + iBu�k
1,u + ..., u ) x, y, z

(17)

�k
1,u ) -i ∑

a

vac 〈�a| f̂O,u|�k〉
εk - εa

�a ≡ ∑
a

vac

�ak
u �a (18)

�ak
u )

〈�a|-[(r - RO) × ∇]u|�k〉
εk - εa

(19)

�ak
u )

〈�a|-[(r - RO) × ∇]u + ω̂u
1|�k〉

εk - εa
(20)

[v̂x,u
exact,1ψ](r) )

- ∑
k

occ ∫ {�k*(r′)�k
1,u(r) - [�k

1,u(r′)]*�k(r)}ψ(r′)

|r - r′|
dr′ (21)
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(as in eq 9, in eqs 21, 22 ψ(r) is an arbitrary one-particle
function). Equation 20 has to be solved iteratively, since its
right-hand side depends on the complete set of linear-
response coefficients {�bj

u} (j ) 1, ..., Nocc; b ) 1, ..., Nvac)
(cf. eqs 18 and 21).

How is the CPKS scheme modified when passing from a
global hybrid (eq 1) to a general OOD (or hyper-GGA)
functional (eq 7)? Let us consider the FDOs (eq 6) of such
a functional. We assemble them using the partial derivatives
of the exchange-correlation energy density, εxc, with respect
to its “ingredients” Fσ, |∇Fσ|, ∇2Fσ, τσ, εx, σ

exact (σ ) R, �), and
∇FR · ∇F� (for brevity, we will employ the general designa-
tion ∂εxc/∂κ for these quantities, where κ ) FR, |∇FR|, ...,
εx,�

exact, ∇FR · ∇F�). We will refrain from providing all the
lengthy explicit expressions of ∂εxc/∂κ (see, e.g., refs 22 and
47 for details) but focus only on their structural features.
Some of the ingredients are more critical than others.
Obviously, this holds in particular for the exact-exchange
energy density, εx

exact. For global hybrids (eq 1), the situation
is particularly simple as none of the derivatives ∂εxc/∂κ
depend further on εx

exact itself. Moreover,

and only the term a0vx
exact�i survives for the corresponding

contribution to the FDOs. The CPKS treatment, in this case,
is well elaborated (see above).

At first sight, matters appear much more complicated for
general OOD functionals (eq 7). The local mixing function
γ may depend on any of the ingredients listed above, and
∂εxc/∂κ may depend on εx

exact. Some nonzero contributions
from those quantities to the linear response ω̂ u

1, thus, might
be expected. It turns out, however, that this is fortunately
not the case, since, at the nonrelativistic one-component level,
εx

exact itself yields no response. To show this, we recall that
the exact-exchange operator v̂x

exact is defined by eq 9 and
rewrite eq 5 as

Then, substituting the perturbed orbitals �̃k
u (eq 17), as

well as v̂x,u
exact 22, into eq 24, we have

where the linear response of the exact-exchange energy
density, εx,u

exact,1, can be rewritten as

The double sum on the right-hand side of eq 26 should
be invariant with respect to the permutation of indices k and
j (both indices run the same set of occupied orbitals). On
the other hand, one can easily see that such a permutation
leads to -(εx, u

exact, 1)*. Therefore,

i.e., εx, u
exact, 1 is a purely imaginary quantity. It is well-known

that within the nonrelativistic approach, the unperturbed
orbitals �k can always be chosen real valued without a loss
of generality (at least, in the case of orbitally nondegenerate
states for which the employed formalism is designed). Then,
because of the purely imaginary character of the magnetic
(orbital Zeeman) perturbation, the �k

1, u are also real (cf. eqs
17-19). Therefore, εx,u

exact,1 (eq 26) should be real as well since
it is composed of real quantities. This in turn contradicts
our above observation that the linear response of the exact-
exchange energy density is purely imaginary, unless εx,u

exact,1

is zero. Therefore, up to second- and higher-order terms in
B, the exact-exchange energy density itself (but not the
operator v̂x

exact!) and, hence, any analytical functions of εx
exact

are invariant with respect to the presence of the external
magnetic field (note that the individual terms �kv̂x,u

exact, 1�k +
�kv̂x

exact�k
1, u - �k

1, uv̂x
exact�k are not necessarily zero, and only

their summation over k gives an overall vanishing result).
These arguments for a vanishing εx, u

exact, 1 do not hold anymore
when passing to two- or four-component relativistic ap-
proaches where spin-orbit effects are taken into account
variationally, since the unperturbed orbitals cannot be chosen
real valued in such a case.

The overall exact-exchange contribution to the FDO (eq
6) of a general OOD functional (eq 7) (δExc

OOD/δ�k)εx
exact is47

For global hybrids, the right-hand side of eq 28 reduces
simply to a0v̂x

exact�k (cf. eq 23). For local hybrids without
dependence of the LMF γ on εx

exact:

[cf., e.g., eq 14 of ref 22]. For the more general case of local
hybrid functionals with a dependence of γ on εx

exact:31

[v̂̃x,u
exactψ](r) ) [v̂x

exactψ](r) + iBu[v̂x,u
exact,1ψ](r) + O(B2)

(22)

∂εxc
hybr

∂εx
exact

) a0 ) const (23)

εx
exact(r) ) 1

2 ∑
k

occ

�k*(r)[v̂x
exact�k](r) (24)

ε̃x
exact(r) ) 1

2 ∑
k

occ

�̃k*(r)[v̂̃x
exact�̃k](r) )

1
2 ∑

k

occ

�k*(r)[v̂x
exact�k](r) + i

2
B ∑

k

occ

{�k*(r)[v̂x,u
exact,1�k](r) +

�k*(r)[v̂x
exact�k

1,u](r) - [�k
1,u(r)]*[v̂x

exact�k](r)} + O(B2) ≡

εx
exact(r) + iBεx,u

exact, 1(r) + O(B2) (25)

εx,u
exact,1(r) ) 1

2 ∑
k

occ

∑
j

occ ({[�k
1,u(r)]*�j(r) -

�k*(r)�j
1,u(r)}∫ �j*(r′)�k(r′)

|r - r′| dr′ +

�k*(r)�j(r)∫ {[�j
1,u(r′)]*�k(r′) - �j

*(r′)�k
1,u(r′)}

|r - r′| dr′) (26)

εx,u
exact,1 ) -(εx,u

exact,1)* (27)

1
2(δExc

OOD

δ�k
)

εx
exact

) 1
2[(∂εxc

OOD

∂εx
exact)v̂x

exact�k + v̂x
exact{(∂εxc

OOD

∂εx
exact)�k}]

(28)

∂εxc
Lh

∂εx
exact

) γ (29)

∂εxc
OOD/Lh

∂εx
exact

) γ + ∂γ
∂εx

exact
(εx

exact - εx
DFT) (30)

2988 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Arbuznikov and Kaupp



By writing “OOD/Lh”, we emphasize that such a func-
tional may still be structured in the form of eq 4, while a
general OOD functional (eq 7) may take any sophisticated
form, including some implicitly defined functions. An
example is Becke’s model for nondynamical correlation
(B05).48

With the above-mentioned invariance of εx
exact and with

eq 28, the response operator in the general OOD case is
obtained as

while eq 20 itself remains unchanged. It, thus, turns out that
implementation of the envisioned generalized CPKS scheme
is relatively straightforward: we need to compute the relevant
matrix elements of operator (eq 31) instead of a0 v̂x, u

exact, 1 for
global hybrids.

4. Computational Details

The generalized CPKS scheme has been implemented within
the MAG-ReSpect code,53 which uses Gaussian-type orbital
basis sets. For evaluating the one- and two-electron spin-
orbit integrals entering eq 13 and 16, we have employed the
atomic mean-field approximation (AMFI),54,55 which has
proven to combine computational efficiency with high
accuracy (see refs 17, 21 and 56 for further details).

A completeness insertion (or resolution of the identity, RI)
in the orbital basis set has been employed when evaluating
the exact-exchange energy density, eq 5, as described in ref
33 (see also refs 22, 26-28, 32, and 36). To minimize any
errors from the RI and from the gauge dependence (see
below) and to guarantee the evaluation of the true perfor-
mance of different functionals, uncontracted basis sets have
been used in this work. In the case of main group radicals,
we started from H-Ar basis sets due to Jensen,57-59 which
are designed to provide a fast and a controlled convergence
toward the basis set limit for spin-spin coupling constants
(pcJ-n family58) and nuclear shielding constants (pcS-n
family59). After a number of trials, we chose the aug-pcS-3
basis sets, composed of (10s6p3d2f) for H, (15s11p5d3f) for
B to F (g functions omitted), (18s14p3d2f) for Mg, and
(18s15p5d3f) for S (g functions omitted). After some
calibration work on the TiF3 complex, we decided to employ
Fægri’s (16s11p8d) basis sets60 for the 3d transition metals,
supplemented by three f functions.61 The ligand atoms were
treated by uncontracted IGLO-IV basis sets62 (good compat-
ibility of IGLO and Fægri basis sets has been noted63 and
could be confirmed in our studies). While we have recently
constructed specific basis sets for molybdenum EPR param-
eter calculations64 for consistency with the calculations on
3d systems, we chose also a Fægri basis for molybdenum
(20s14p11d)60 and augmented it by an even-tempered set
of four f exponents (20.31, 5.39, 1.43, and 0.38) based partly
on extrapolation from the 3f polarization set for chromium.61

We consider here one- and two-parameter local hybrid
functionals optimized previously to yield the best atomization
energies26,27 as well as reaction barriers.32 That is, five

different local hybrids have been evaluated: (i) Lh-SVWN
with γσ ) 0.48tσ (cf. eq 4; “S” stands for Slater-Dirac LSDA
exchange4,5 employed as εx, σ

DFT, and “VWN” stands for
Vosko-Wilk-Nusair LSDA correlation model V6 employed
as Ec

DFT), where

is the von Weizsäcker kinetic energy density, and τσ is given
by eq 8. This has, so far, been one of the most successful
local hybrids for atomization energies and for reaction
barriers;26,28 (ii) Lh-SVWN with γσ ) 0.22sσ, where

is the dimensionless density gradient; and (iii) Lh-SLYP with
γσ ) 0.24sσ (here VWN LSDA correlation has been replaced
by Lee-Yang-Parr GGA correlation).11 The last two local
hybrids27 exhibited somewhat inferior atomization energies
and reaction barriers compared to the first but provided
superior nuclear shielding constants22 (in that case imple-
mented as localized local hybrid potentials36 followed by
an uncoupled DFT perturbation treatment). Finally, we have
evaluated also two local hybrids32 that include an explicit
dependence on spin polarization

These are (iv) Lh-SVWN with gσ ) (0.446 ( 0.0531 
)tσ

and (v) Lh-SVWN with γσ ) erf[(0.196 ( 0.0416 
)sσ] (the
plus sign holds for σ ) R, the minus sign holds for σ ) �).
These two very recent functionals are particularly accurate
for atomization energies.32 According to the order above,
we will abbreviate the functionals in the following as “Lh-
I” to “Lh-V” (Tables 1 and 2).

For comparison, we also include results obtained with four
global hybrids (B3LYP3,11 and B3PW913,10 with 20% exact
exchange and BHLYP2,11 and BHPW911,10 with 50% exact
exchange65), one GGA (BP86),8,9 and one LSDA (SVWN)5,6

functional. These more traditional functionals have previously
been evaluated for g-tensor calculations in refs 17, 21, 45,
50, 51, and 66 but with smaller (contracted) basis sets.

Due to the use of the AMFI approximation54 for the spin-
orbit integrals, we used a common gauge origin at the center
of mass for the small main group radicals and at the metal
nucleus for the transition-metal systems. This choice is well
justified for g-tensors (see ref 17 and references therein) and
seems to yield negligible gauge errors, in particular, in view
of the large uncontracted basis sets used. Indeed, test
calculations of the g-tensor for the Fe(CO)5

+ complex
(tetragonal pyramid) with the gauge origin shifted to axial
carbon and oxygen nuclei give absolute relative deviations
of the g-shift components of less than 0.3%.

The molecular structures are DFT-optimized ones em-
ployed already in refs 17-19, 50, 21, 66, and 67.

5. Results and Discussion

Table 1 shows the calculated g-shift components for a
selection of light main-group radicals compared to experi-

ω̂u
1 ) 1

2[(∂εxc
OOD

∂εx
exact)v̂x,u

exact,1 + v̂x,u
exact,1(∂εxc

OOD

∂εx
exact)] (31)

tσ ) τW,σ/τσ, σ ) R, � (32)

τW,σ ) |∇Fσ|2/(8Fσ) (33)

sσ ) |∇Fσ| /[2(3π2)1/3Fσ
4/3] (34)


 ) (FR - F�)/(FR + F�) (35)
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ment. It has been demonstrated previously21 that standard
GGA or global hybrid functionals tend to reproduce the
spread of these main-group g-tensors well, with a slight
overestimate of the absolute value in most cases. A notable
exception is the ∆g33 component of the H2O+ radical, which
is significantly underestimated by standard functionals. This
has been traced back previously to a near-degeneracy
situation.17 We do, therefore, not expect much room for
improvement with local hybrid functionals, in particular, as
the experimental error bars often exceed 500 ppm (0.5 ppt
or 0.0005), and the agreement between theory and experiment
of ca. 500-1000 ppm should be considered as satisfactory.45

Looking at the mean absolute errors (MAEs) and results
of linear regression analyses, we do indeed confirm the
previously found17 relatively small overall sensitivity of the
results to the functional. Even LSDA, which is poor for
thermochemistry, kinetics, and other properties, performs
well here. We, therefore, use the local hybrid data in Table
1 mainly to validate the generalized CPKS implementation.
Indeed, the performance of the five local hybrids Lh-I to
Lh-V is overall similar to that of standard global hybrids
like B3PW91 or B3LYP. Looking more closely, we see that,
upon consideration of all molecules and components, the
s-LMF functionals provide a somewhat larger and, thus, an

Table 2. Comparison of Calculated and Experimental g-Shift Components for 12 Transition-Metal Compounds (ppt)

pure DFT global hybrids local hybrids

SVWN BP86 B3PW91 B3LYP BHPW91 BHLYP Lh-Ia Lh-IIb Lh-IIIc Lh-IVd Lh-Ve expt.

Co(CO)4 ∆g| 3.51 4.08 12.3 12.7 65.5 69.7 8.1 8.16 8.74 7.78 7.56 3.6f

∆g⊥ 96.8 80.5 108.6 112.9 148.5 157.2 116.1 115.2 121.4 115.0 112.0 127.6f

CrOF4
- ∆g|| -22.5 -18.5 -24.6 -24.4 -35.7 -35.3 -25.4 -25.6 -25.8 -25.1 -25.3 -43.3g

∆g⊥ -31.5 -25.2 -30.5 -30.0 -54.1 -54.3 -31.3 -32.5 -32.5 -31.0 -32.2 -34.3g

CrOCl4- ∆g|| 21.2 18.9 14.6 16.3 -0.82 1.15 15.1 15.3 14.9 15.8 16.5 10h

∆g⊥ -22.5 -19.3 -27.1 -26.7 -56.5 -56.8 -27.2 -28.0 -28.0 -26.6 -27.2 -25h

Cu(NO3)2 ∆gzz 125.8 121.3 184.7 182.7 326.7 319.6 176.0 179.9 183.8 171.4 172.0 246.6i

∆gxx 28.2 28.6 46.5 46.3 84.5 84.1 43.1 43.1 44.3 41.7 40.8 49.9i

∆gyy 30.8 30.7 46.8 46.7 86.8 86.1 43.5 43.5 44.9 42.3 41.6 49.9i

Cu(acac)2 ∆gzz 125.1 120.1 182.8 181.1 304.1 297.7 172.3 177.6 181.8 168.2 170.1 285.2j

∆gxx 30.5 30.5 47.2 46.9 77.9 76.9 43.1 43.8 45.1 42.0 41.8 48.7j

∆gyy 35.3 34.8 51.7 51.5 79.9 79.2 47.6 48.5 49.7 46.6 46.6 48.7j

Fe(CO)5
+ ∆g|| -1.03 -1.42 -3.48 -3.56 -10.1 -9.4 -2.1 -2.31 -2.51 -2.05 -2.26 -1.4k

∆g⊥ 61.8 51.4 66.6 68.8 86.2 90.1 73.0 71.8 74.9 72.3 69.4 78.4k

Mn(CO)5 ∆g|| -1.05 -1.30 -2.55 -2.69 -6.78 -6.72 -1.93 -1.97 -2.14 -1.87 -1.89 -2.3l

∆g⊥ 27.3 23.7 28.4 29.3 32.8 33.9 31.0 30.2 31.6 30.8 28.9 35.7l

MnO3 ∆g|| 3.65 2.63 -1.71 -1.27 -17.9 -18.3 -0.3 -0.19 -0.71 0.025 0.19 1.3m

∆g⊥ -0.78 2.54 1.78 3.96 -213.7 -233.0 3.3 3.17 2.12 3.76 3.40 6.1m

MoOF4
- ∆g|| -77.6 -70.5 -82.8 -85.0 -99.5 -102.4 -86.4 -84.7 -84.6 -85.7 -84.3 -107.7 n

∆g⊥ -66.9 -58.6 -63.2 -63.7 -69.4 -69.8 -66.1 -66.9 -66.4 -66.0 -66.9 -76.9n

MoOCl4- ∆g|| 7.10 5.97 -3.95 -3.46 -21.8 -21.5 -2.86 -1.48 -1.29 -2.03 -0.47 -37.3n

∆g⊥ -51.3 -46.5 -51.8 -52.2 -59.7 -60.1 -53.1 -53.5 -53.0 -52.8 -53.3 -56.1n

Ni(CO)3H ∆g|| 1.39 1.72 4.96 5.34 14.6 15.4 2.93 2.86 3.08 2.82 2.54 1.9o

∆g⊥ 41.6 42.4 72.6 74.1 168.3 173.5 61.3 65.3 66.2 58.8 60.1 65.1o

TiF3 ∆g|| -1.26 -1.33 -1.44 -1.28 -1.43 -1.23 -1.66 -1.59 -1.51 -1.61 -1.60 -3.7p

∆g⊥ -53.5 -37.2 -51.1 -49.4 -76.2 -70.9 -60.9 -58.3 -57.6 -60.2 -59.1 -123.7p

MAEq 24.7 27.9 16.3 16.2 32.6 33.6 15.5 15.2 14.5 16.2 16.6
MaxSEq,r -160.1 -165.1 -102.4 -104.1 -219.8 -239.1 -112.9 -107.6 -103.4 -117.0 -115.1

linear regression analysis for comparison between theory and experiments

slope (A) 0.539 0.491 0.702 0.701 1.14 1.13 0.692 0.701 0.714 0.678 0.678
intercept (B) 0.6 2.0 5.4 5.8 4.9 4.9 3.8 4.2 4.8 3.6 3.4

RC 0.956 0.965 0.981 0.979 0.887 0.872 0.980 0.981 0.980 0.979 0.980
SD 14.7 12.5 13.0 13.7 55.3 59.3 13.0 13.0 13.5 13.1 12.8

a Lh-SVWN, γ ) 0.48t. b Lh-SVWN, γ ) 0.22s. c Lh-SLYP, γ ) 0.24s. d Lh-SVWN, γ ) (0.446 ( 0.0531 
)t. e Lh-SVWN, γ ) erf[(0.196
( 0.0416 
)s]. f ref 71 (EPR in Kr matrix). g ref 72 (EPR in aqueous KCrOF4-HF solutions). h refs 73 (EPR of Cr-surface impregnated rutile
(TiO2) subjected to the exposure of SO2, Cl2, and HCl), and 74 (EPR in CH2Cl2 solution). i ref 75 (EPR in Ne matrix). j ref 76 (EPR of
radicals trapped in CHCl3 glass). k ref 77 (EPR in Co(CO)6 host crystal). l ref 78 (EPR in C6D6 matrix). m ref 79 (EPR in Ne matrix). n ref 80
(single crystal EPR). o ref 81 (EPR in Kr matrix). p ref 82 (EPR in Ar matrix). q See footnotes h and j in Table 1. r Except for BHPW91 and
BHLYP, where the largest error is observed for the ∆g⊥ component of MnO3 (due to strongly spin-contaminated solutions), for all other
functionals, the largest outlier is the ∆gzz component of Cu(acac)2. s See footnote k to Table 1 (data in ppt).
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improved slope than those of the t-LMF-based local hybrids
and the standard global hybrids. This changes upon exclusion
of the ∆g33 component of H2O+. Now all slopes (except for
BP86) are larger than 1, and the t-LMFs give the slightly
better slopes than the s-LMFs. The global hybrids BHLYP
and BHPW91 with 50% exact exchange give even larger
slopes. MAEs and standard deviations (SD) of all local
hybrids are comparable to B3PW91, B3LYP, or BP86 and
are lower than those of BHLYP or BHPW91 (the 50% EXX
admixture of the latter two functionals leads to some spin
contamination, which may be responsible for the larger
scatter of the data).17

Looking at the special case of H2O+ (see above), perfor-
mance of the local hybrids is also similar to that of the global
hybrids. The slightly larger ∆g33 component with Lh-III may
reflect the use of the LYP correlation functional (see also
BHLYP results). For this radical, the LSDA, in form of the
SVWN functional, has been shown previously to perform
particularly well, most likely due to fortuitous error cancel-
lation regarding the near-degeneracy of the Kohn-Sham
eigenvalues.17 Apart from H2O+, the largest deviations from
experiment (cf. maximal signed errors (MaxSEs) in Table
1) are observed almost always for either ∆g11 (negative) or
∆g22 (positive) components of the O3

- radical anion (the only
exception is SVWN, which shows the largest error for the
∆g33 component of HCO).

A rather different situation than for these main-group
radicals holds for the transition-metal complexes (Table 2).
Here, the dependence on EXX admixture is much more
pronounced. As shown previously,17 the semilocal function-
als (SVWN and BP86) exhibit reasonable correlation with
experiment but with a severe systematic underestimation of
the linear regression slope. Global hybrids with a moderate
EXX admixture (B3PW91 and B3LYP) improve matters but
still recover only ca. 70% of the slope. The “half and half”
functionals BHPW91 and BHLYP finally overestimate the
slope somewhat and exhibit unacceptably large scattering
of the results (cf. MAEs and SDs). This is related to
significant spin contamination in many cases (much more
so than in the main-group radicals), as has been analyzed in
detail previously.17,19,68

The five local hybrids tested perform essentially as good
as B3PW91 and B3LYP. This holds not only for the overall
statistics of the results but also for most individual systems.
A very slight reduction of the slope is found when introduc-
ing spin polarization into the LMF (Lh-IV and Lh-V). This
may reflect the overall somewhat reduced average EXX
admixture.32

Looking at individual complexes, we note TiF3 as a case
with particularly large underestimate of the ∆g⊥ component
(Table 2). Here, even a larger than 50% EXX admixture
would still improve the agreement with experiment (spin
contamination is not a problem for this molecule). For this
example, all five local hybrids provide results intermediate
between the hybrids with 20% and 50% exact exchange.
Similar behavior pertains, e.g., to Co(CO)4 and Ni(CO)3H,
where, however, the local hybrid results are already in
favorable agreement with experiment (in the latter case, the
standard global hybrids overshoot already). In contrast, for

the two copper complexes, Cu(NO3)2 and Cu(acac)2, the local
hybrids give slightly lower g-shifts than B3LYP or B3PW91
and, thus, also slightly worse agreement with experiment.

A possible explanation for the fact that the local hybrids
exhibit larger g-shifts than B3LYP or B3PW91 for the early
3d complex TiF3 but reduced g-shifts for the later metal
centers Ni and Cu (for the intermediate Co, the g-shifts are
very similar) relates to a previously discussed behavior27,36

of the aVerage exact exchange admixtures of the simple one-
or two-parameter local hybrids discussed here. This trend
may be monitored by density-averaged LMF values:

or, in a simplified spin-averaged way, by

It has been found that these average EXX admixtures tend
to decrease as one moves to higher nuclear charges both for
isolated atoms and for molecules made from these atoms.27,36

For the free 3d atoms, γj gradually decreases from 0.229 (Ti)
to 0.186 (Cu). The overall range for the complexes is less
pronounced (they exhibit all values between 0.21 and 0.25)
due to the contributions from the ligand spheres. However,
as the g-shift is dominated by the spin-orbit contributions
of the metal center and localized ligand-field-type excitations
in all of these systems, the observed decrease of γj (which
derives mainly from core and semicore regions of the atoms)
is certainly most relevant and explains some of the observed
trends. The future development of local hybrids will benefit
from an improved understanding of the predominant density
regions affecting certain properties.

The lowest atomic γj value (0.167) is found for the 4d
element Mo. However, for the two Mo complexes in the
test series, the local hybrids provide, again, g-shift results
close to the B3LYP and B3PW91 data. They underestimate
the absolute value of the (negative) experimental ∆g⊥
components slightly and of the ∆g| components more
strongly. However, in these cases, one has to keep in mind
that for 4d complexes, higher-order spin-orbit effects, which
have been neglected in the present work, become already
notable. In axially symmetric Mo complexes, they have been
shown in our previous work to render particularly the ∆g|
component more negative.64,69 For example, at B3PW91
level, ∆g| in MoOCl4

- is lowered by about 11 ppt and ∆g⊥
by about 4 ppt when going from a perturbational treatment
of spin-orbit coupling to a two-component variational
Douglas-Kroll-Hess calculation of the g-shift tensors.64

Taking into account similar corrections for higher-order spin-
orbit effects in 4d systems, performance of the standard
global hybrids and the local hybrids for the two Mo
complexes is somewhat better than suggested by the data in
Table 2, in particular for the parallel component.

The present local-hybrid results for g-tensors of transition-
metal complexes suggest that for the systems and the
particular property at hand, the (average or local) EXX

γ̄σ ) ∫ γσ(r)Fσ(r)dr/ ∫ Fσ(r)dr )

(1/Nσ)∫ γσ(r)Fσ(r)dr, σ ) R, � (36)

γ̄ )
NRγ̄R + N�γ̄�

NR + N�
(37)
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admixture at the metal center itself is most crucial for the
performance. Overall, the five local hybrids studied perform
as good but not notably better than standard global hybrids
B3LYP or B3PW91. Probably, the one- or two-parameter
LMFs studied, which were optimized exclusively for ther-
mochemistry and for reaction barriers, provide too low exact
exchange near the transition-metal center to improve the
agreement compared to global hybrids with ca. 20% exact-
exchange admixture throughout the system. This provides
clues toward the construction of improved LMFs, a line we
intend to follow in the future.

6. Conclusions and Outlook

A generalized coupled-perturbed Kohn-Sham (CPKS) scheme
for the calculation of second-order magnetic properties has
been derived and implemented for occupied orbital-depend-
ent (OOD) functionals depending on the exact-exchange
energy density. Within a nonrelativistic one-component
approach, the coupling terms in the CPKS scheme arise
exclusively from variation of the exact-exchange energy
density itself with respect to the orbitals, cf. eq 31. These
terms involve the nonlocal exchange operator. Other occur-
rences of the exact-exchange energy density in functional
derivatives of the OOD functionals, with respect to the
orbitals, do not contribute to the coupling terms. This allows
a relatively straightforward implementation of the CPKS
equations for OOD (“hyper-GGA”) functionals and for
magnetic properties.

The generalized CPKS scheme has been implemented and
tested for electronic g-tensors with local hybrid functionals.
Overall, the five local hybrids tested exhibit similar perfor-
mance for the g-shift tensors of main-group radicals and
transition-metal complexes as the standard global hybrids,
like B3LYP. In case of the transition-metal complexes, in
particular, closer analysis of the results suggests that with
the local mixing functions (LMFs) tested, the larger flexibility
of local over global hybrids has not yet been exploited
sufficiently. This pertains mostly to the EXX admixture
around the transition-metal center. This result may not be
surprising given: (i) the use of only one or two semiempirical
parameters in the LMFs studied so far; and (ii) the optimiza-
tion of these parameters only for main group thermochem-
istry and reaction barriers. Indeed, these simple local hybrids
outperform standard global hybrids already notably in these
areas. Improved performance for g-tensors and, of course,
for various other magnetic or electric properties will depend
on the construction of more flexible LMFs and on their
optimization for the various critical regions within an atom,
molecule, or solid.

Finally, comparison between a direct use of nonlocal exact-
exchange potentials and a transformation to local and
multiplicative potentials within an OEP framework will be
of interest. This will require the implementation of more
accurate OEP-based schemes than used in our previous
evaluation of localized local hybrid potentials for nuclear
shieldings.22
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Abstract: This work describes the extension of a previously reported empirical localized orbital
correction model for density functional theory for atomization energies, ionization potentials,
electron affinities, and reaction enthalpies to the correction of barrier heights. Various chemical
reactions’ barrier heights are corrected, including cycloadditions, cycloreversions, dipolar
cycloadditions, SN2’s, carbon and hydrogen radical reactions, sigmatropic shifts, and electro-
cyclizations. The B3LYP localized orbital correction version of the model reduces the number
of outliers and overall mean unsigned error versus experiment or ab initio values from 3.2 to
1.3 kcal/mole for barrier heights and from 5.1 to 1.1 kcal/mole for reaction enthalpies versus
B3LYP. Furthermore, the new model has essentially zero additional computational cost beyond
standard DFT calculations. Although the model is heuristic and is based on multiple linear
regression to experimental or ab initio data, each of the parameters is justified on chemical
grounds and provides insight into the fundamental limitations of DFT, most importantly the failure
of current DFT methods to accurately account for nondynamical electron correlation.

I. Introduction

In a series of previous publications, we have developed an
approach to improving density functional theory (DFT)
methods1 based on empirical localized orbital corrections
(DFT-LOC).2 When used in conjunction with the B3LYP
functional3 (B3LYP-LOC, which will be the focus of the
present publication), these corrections provide a remarkable
improvement in atomization energies,2a ionization potentials
and electron affinities,2b and heats of reaction for molecules
composed of atoms in the first two rows of the periodic
table,2c as detailed in Sections II.A, II.B, and II.D, respec-
tively. Recently we have also demonstrated improvements
for thermochemistry of small transition-metal species as
summarized in Section II.C.2d

Our aforementioned correction scheme is based upon
assignment of parameters using the equilibrium geometries
(i.e., reactant and product) only. A general theory must enable
calculation of the energy of the molecule as a function of

the atomic coordinates for an arbitrary arrangement of the
atoms. This in turn requires that the corrections be formulated
as a continuous function, rather than discrete parameters.

Such a function can be easily constructed and optimized,
utilizing a molecular mechanics-like formulation, with the
addition of empirical terms to rectify errors endemic to
B3LYP. These parameters can eventually even be deployed
to treat dispersion, an area in which B3LYP is known to
perform poorly. Still, optimization of such a function cannot
proceed without an understanding of how the parameters
change as bonds are made and broken. We have developed
parameters for errors manifested in reactants and products,
allowing more accurate calculation of enthalpies, in previous
publications as summarized in Section II.D. Note that we
do not attempt to correct for errors found in energies of
dissociated atoms themselves but instead correct for the errors
found in differences of energies exclusively. For example,
we studied reaction enthalpies2d where we considered the
differences in energies of the well-defined reactants and
products only. By considering these well-behaved species
instead of attempting to tackle dissociated atoms, we focus
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our efforts on areas where DFT has already been shown to
produce reasonable results and, therefore, can produce
remarkable results upon application of corrections schemes,
such as those we continue to develop.2a-d In the intermediate
region connecting reactant to product, parameterization of
the model is necessary, particularly at the transition state
where unusual geometries and effective hybridization states
of central atoms are routinely observed. With transition-state
correction parameters in place, the remainder of the potential
surface can be approximated via interpolation between the
key stationary points (equilibrium geometry, transition state,
and separated reactants and products). Ideally the interpolat-
ing function would be modeled after accurate ab initio
quantum chemical behavior in the bond-breaking region. In
practice, unrestricted DFT actually performs reasonably well
(although not perfectly) in this regime, and highly precise
results for the bond-breaking region are not critical for the
vast majority of practical chemical applications. Conse-
quently, we focus in this paper on the task of developing
accurate and robust parameters for B3LYP-LOC for cor-
recting the barrier height at the transition state, fitting to
experimental and high-quality ab initio data for more than
100 chemical reactions taken from the literature.

We have assembled a wide range of reactions4 of various
types, encompassing radical reactions, additions, cyclizations
and reactions containing neutral, cationic, and anionic
species. The size and diversity of the training set is, thus,
larger and more varied than has been used in previous tests
of DFT functionals or in efforts to optimize these function-
als.5 In our view, the use of large and diverse data sets is
critical to avoid over-fitting, to overcome noise in the data
set (inevitable as one moves away from the highly filtered
experimental data sets employed by e.g., Pople and cowork-
ers in testing and optimizing G3 theory),8 and to present to
the model a variety of qualitatively different transition-state
motifs which may require new parameters. The present data
set, while still far from completely extensive, does represent
progress as compared to alternatives in the literature.5

In many cases, data is available for both forward and
backward reactions, with the barriers related (as mandated
by detailed balance) by the enthalpy of reaction. This implies
that one cannot obtain good results for both directions,
regardless of the parameterization of the transition-state
model, unless the enthalpies of reaction are accurate. As a
result, we have carefully examined the enthalpies of reaction
for all of our test cases, with regard to both performance of
B3LYP-LOC, and in terms of possible errors in the literature
estimates (experimental or derived from high-level ab initio
calculations) of these values. For example, Truhlar and
coworkers have assembled a series of radical reactions, which
have formed a key component of their DFT test and training
sets for many years.7 They incorporate many sophisticated
terms into their estimations of experimental barrier heights
(e.g., tunneling corrections), which undoubtedly have im-
proved the precision of the data set. Nevertheless, there are
cases (noted in the text) where the “experimental” enthalpies
of reaction they use are in significant conflict with, for
example, results obtained by the Pople group for the same
quantity (as derived from the Pople results for atomization

energies,6 which can be combined to yield enthalpies of
reaction). In these cases, we have had to make decisions
concerning which data to employ, and the choices are
described below. The main point is that the construction of
true benchmark data sets for testing barrier height calcula-
tions, with well defined error bars, is still a work in progress,
and this impinges upon what one can expect in any set of
theory/experiment comparisons in these areas. In contrast,
for small-molecule atomization energies, the ability to
converge high-level CCSD(T) calculations with basis set
extrapolations, relativistic corrections, etc., provides a means
to resolve most disputes concerning interpretation of experi-
mental data around equilibrium geometries. True benchmarks
have been available for some time, at least for small
molecules, as they predominantly populate the G2 data set.8

For transition states and geometries far from equilibrium,
more sophisticated approaches than CCSD(T) might be
required, such as methods based on multireference wavefunc-
tions.

In addition to facilitating the development of new transi-
tion-state parameters, the present set of reactions provides
an opportunity to test the B3LYP-LOC performance for
enthalpies of reaction on a new data set, which has not been
included in the training set. A subset of the reactions we
study here can be constructed from the Pople G3 data base,6

which we did use as a training set for B3LYP-LOC. Yet, if
these reactions are removed, there remains a substantial
number of cases to which B3LYP-LOC has never been
exposed. The results, reported below, obtained with no
parameter adjustment for the equilibrium geometry parameter
set, demonstrate that the performance for this test set (which
contains some rather complex and unusual molecules) is
comparable to that of the training set, further validating the
B3LYP-LOC parameterization as robust and applicable
outside the domain of its training set with no falloff in the
quality of the results. The overall average error for enthalpies
of reaction, 1.2 kcal/mole, is comparable to that expected
for high-level ab initio methods, such as G3 theory, and is
likely within the error bars of the experimental and high-
level computational data.

The transition-state parameterization itself requires a total
of 8 new parameters unique to transition states; hence, a total
of 36 parameters, including 22 for neutral equilibrium
species2a and an additional 6 for the charged species,2b were
utilized in this work. While this number might seem large,
it is comparable to the number of parameters exploited by
modern DFT functionals, such as M06-2X.17 Some of these
parameters address new hybridization states that are created
by attacks on various types of central atoms, and these
parameters are generally consistent with those already
optimized for enthalpies of reaction.2a Similarly there are a
few new parameters for stretched or half bonds, which again
are consistent with the equilibrium results2a (despite the lack
of constraints used in the parameter optimization). Overall,
the ratio of the number of new adjustable parameters (8) to
that of training set cases (105) appears reasonable, and the
parameters can all be physically rationalized in light of
previous results.
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Charged molecules present a special challenge for the
B3LYP-LOC method in that corrections for charging and
discharging must be performed via a separate set of
parameters, developed in ref 2b. We have used the param-
eters from that reference without adjustment, achieving
reasonable results for both anions and cations. Specialized
parameters for unusual groups, such as azides, would in fact
improve the results, but we have avoided this because we
do not believe there is sufficient or diverse enough data to
avoid the danger of over-fitting for such cases. Nevertheless,
such a path could readily be pursued in the future, if
additional data were to be generated [e.g., via converged
CCSD(T) calculations].

The paper is organized as follows. In Section II, we
provide a brief summary of the B3LYP-LOC approach,
referring to previous papers for detailed discussion of
parameterization and validation. Section III presents the
development of the B3LYP-LOC model for transition states,
introducing the eight new parameters required for these
calculations. Section IV describes the results obtained for
the 105 reactions in the training set, for both reaction
enthalpies and barrier heights, and discusses the distribution
of errors, including possible explanations for the small
number of outliers that are observed. Finally, in Section V,
the Conclusion, we summarize our results and briefly discuss
future directions.

II. Overview of the B3LYP-LOC Methodology

In this section, we simply review the work on the B3LYP-
LOC methodology that has already been published, as this
forms the foundation for the work presented herein. Note
that no additions or modifications are made to any of the
methods presented in our previous publications.

II.A. Atomization Energies. The original B3LYP-LOC
work2a utilized 22 empirically determined, but chemically
justified, parameters to reduce the mean absolute deviation
for atomization energies on the G3 dataset of 222 molecules
from 4.8 to 0.8 kcal/mole, for uncorrected B3LYP and
B3LYP-LOC, respectively. This value is comparable to that
obtained using G3 theory, 1.1 kcal/mole, but G3 theory
incorporates coupled cluster methods, thus, making it
intractable for larger molecules. Almost all outliers were
eliminated with essentially zero additional computational cost
beyond standard DFT calculations, as the corrections are
applied a posteriori in an additive fashion. All corrections
are based upon valence bond assignments and are divisible
into four major categories: corrections of atoms, individual
bonds, neighboring bonds of a given bond, and radical
environmental corrections. These parameters also provide
valuable insight into the fundamental limitations of DFT,
specifically, the difficulties exhibited by DFT methods in
accurately modeling variations in nondynamical electron
correlation across different types of chemical bonds, lone
pairs, hybridization states, and singly vs doubly occupied
orbitals. 9,10

To better understand these limitations, first consider the
simple case of diatomic hydrogen, H2. As this molecule is
stretched to increasing bond lengths, the exact [Hartree-Fock
(HF)] exchange hole remains delocalized over both atoms,

even though the true exchange correlation hole is localized
over mostly just one atomic center. Combining this exact
HF exchange with localized correlation produces a delocal-
ized exchange-correlation hole, which is qualitatively incor-
rect in nature, producing large errors in DFT calculations
that employ a full exact exchange model. This is substantially
improved by combining the exact exchange with Becke
exchange and the generalized gradient approximation, pro-
ducing a more localized exchange hole. The qualitatively
correct behavior of the exchange-correlation hole enabled
significant progress to be made in reducing errors for
gradient-corrected DFT functionals, such as BP86,12 BLYP,13

and PBE.14

Dynamical electron correlation (taken on the length scale
of an atom) is well modeled by gradient corrections in the
exchange and correlation components of modern functionals;
on the other hand, nondynamical electron correlation (taken
on the length scale of a bond) is more problematic.10 Within
each localized electron pair (in a bond or lone pair), there is
a self-interaction “error” given by the difference in the self-
Coulomb and exchange terms. Although this self-interaction
is necessarily zero for unpaired electrons, i.e., the Coulomb
and exchange terms cancel, DFT assigns a non-zero value
in this case, resulting in detrimental errors, especially at
increasing bond lengths, where the self-interaction becomes
very large and negative. In the case of doubly occupied
orbitals, we posit that the self-interaction error embodied in
DFT is actually used to quantitatively model the nondy-
namical electron correlation present within a localized bond.9

The addition of a component of HF exchange, as is done in
B3LYP and other hybrid functionals, can then be thought
of as adjusting the size of the self-interaction term in the
DFT exchange functional; since the HF exchange term has
no self-interaction, increasing the fraction of HF exchange
lowers the remaining self-interaction in the functional. Fitting
the fraction of HF exchange to experimental atomization
energies then allows a more accurate matching between the
self-interaction energy for an electron pair and between what
is required to represent nondynamical correlation for that
pair. The success of B3LYP in reducing the average error
in atomization energies for the G2 data set, as compared to
the great majority of gradient corrected functionals, is
evidence that this approach is successful in realizing its
objective.6

However, the addition of HF exchange is effective at
treating only the “average” nondynamical correlation of an
electron pair in a localized bond, whereas differences in the
local environment of various bonds and in their effects on
the nondynamical correlation are not modeled easily by a
localized gradient expansion.10 Notably, while so-called
global hybrid functionals, such as B3LYP, employ constant
fractional admixtures of exact exchange, local hybrid func-
tionals22 employ position-dependent exact-exchange admix-
tures, allowing for deviations in the nondynamical correlation
to be better modeled, at least in principle. This presents a
unique and interesting way to address the issue of capturing
nondynamical correlation that differs from our own approach
but is not explored further here. Instead, the DFT-LOC
methodology rests upon the assumption that the localized

2998 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Hall et al.



nuclear framework supporting an electron pair is a principal
factor controlling the deviations in value of the nondynamical
correlation from the “average” value within global hybrid
functionals. Therefore, empirical corrections are applied
based upon these localized frameworks. Consider, for
example, the corrections applied to single bonds between
heavy atoms of various lengths, for example the 6-311++G
(3df,3pd) basis: short (-1.36 kcal/mole), medium (-1.90
kcal/mole), and long (-2.57 kcal/mole). These values
become appreciably more negative with increasing bond
length. This reflects the notion that as bond length increases,
nondynamical correlation becomes more negative (as the
electrons have more room to avoid each other), and DFT
systematically underestimates this effect with increasing
severity. In the extreme case, where there is a charge transfer
leading to predominantly ionic bonding (e.g., in NaCl),
implying substantial localization of the electron pair of the
bond near one atom, the B3LYP results are most severely
underbound (by 4.5 kcal/mole for NaCl); this parameter is
consistent with the others listed above and, when used to
correct all bonds of this type, leads to enormous improvement
in B3LYP-LOC predictions for molecules in the G3 data
set containing one or more bonds with substantial charge
transfer character.

A further problem that can be observed with B3LYP
calculations, and other functionals, is that the average error
(as judged by the mean unsigned error) increases systemati-
cally with the size of the molecule under investigation.15 For
example, the MUE for B3LYP atomization energies for the
G2,8 extended G2,8 and G3 datasets are 2.43, 3.08, and 4.81
kcal/mole, respectively, consistent with the increasing aver-
age molecular weight of the components of each of these
three data sets. This systematic increase in error with
molecule size is effectively addressed by the empirical
corrections in the LOC scheme. Indeed, the errors in B3LYP
are not random but are attributable to the specific localized
chemical bonds in each molecule as well as the local
environments of those bonds. It is important to emphasize
that other functionals we tested (BLYP, B3PW91, SVWN,
BP86, BPW91, B3P86, and later M05-2X and M06-2X)
display greater average errors than B3LYP-LOC upon
application of LOC corrections and, thus, apparently have
errors that are less systematic in the LOC framework than
B3LYP. Notably, the LOC-corrected versions of these other
methods, including other hybrid functionals, GGAs and even
the LDA, displayed non-trivial improvements when coupled
with LOCs but are still not comparable to the remarkable
improvement displayed by B3LYP-LOC itself. For example,
the average error in BLYP for the G3 set is reduced from
7.3 kcal/mole to 2.1 kcal/mole, not as good an end point as
for B3LYP whose errors were reduced from 3.1 kcal/mole
to 0.6 kcal/mole but still an impressive improvement
nonetheless. Effectively, the LOC scheme removes the
systematic errors for each bond type, thereby qualitatively
diminishing the accumulation of such errors with increasing
molecular size to the point where the errors for the G3 data
set, which contains much larger molecules, is only a few
tenths of a kcal/mole larger than that of the G2 or extended
G2 sets. Furthermore, problems with properly modeling

cyclic, branched, and linear molecules (for which B3LYP
exhibits quite different error patterns) are ameliorated via a
simple correction based on nearest-neighbors of a given bond,
noting that underbinding is present when the atoms compris-
ing the bond make additional bonds that would enable an
electron from the initial bond (e.g., long single bonds) to
make excursions.

The validity of this method is verified by the successful
application of the LOC parameters to the G3 dataset in which
the mean unsigned error is reduced from 4.8 to 0.8 kcal/
mole, a value not only competitive with that of G3 theory
but also demanding orders of magnitude less computational
cost. Further, after the application of the LOC scheme, the
number of B3LYP outliers is substantially reduced. Thus,
this DFT-based method consistently achieves near-chemical
accuracy. Detailed parameters and results for atomization
energies and enthalpies of reaction can be found in refs 2a
and 2c and the accompanying Supporting Information.

II.B. Ionization Potentials and Electron Affinities. In
a subsequent publication,2b the B3LYP-LOC methodology
was extended from atomization energies to ionization
potentials (IP) and electron affinities (EA). In this manner,
B3LYP-LOC can now be extended to ionic, in addition to
neutral, molecules with 37 parameters developed specifically
for charged species. (Be that as it may, only six of these
parameters were employed here, as they cover the most
common chemistries, such as those studied in this work.)
Further, systems with multiple unpaired electrons are also
addressed. These new features are requisite for an approach
that is aimed at applicability across a wide range of chemical
phenomena. The methodology is applied to the G2 dataset
of 134 molecules (IPs and EAs) with a resultant decrease in
MUE (vs experiment) of 0.137 to 0.039 eV. This error is
more than three times smaller than the original B3LYP error
and is comparable to the errors obtained with G2 theory, a
high-level ab initio method. Further, the number of outliers
is also substantially reduced to levels below that achieved
with G2 wave-function-based theory.

As with the B3LYP-LOC application to atomization
energies, the corrections are applied a posteriori in an additive
fashion and, therefore, account for only a trivial increase in
computational cost over uncorrected B3LYP. The 22 empiri-
cal parameters from the original work2a are employed in
addition to parameters exclusive to ions developed in this
specific work. Again, these parameters are physically justifi-
able and provide insight into the fundamental nature of DFT.
Unsurprisingly, DFT’s failure to accurately model nondy-
namical electron correlation and self-interaction error con-
tributes substantially to errors in IPs and EAs, just as with
atomization energies.

Here, the neutral atoms are taken as the reference state,
and corrections are applied to the atomic or molecular ions
and the neutral molecules, as necessary. The B3LYP-LOC
energy of a charged atom is then given by the sum of the
corrections for that charged atom (as specified in ref 2a) and
the B3LYP energy for the charged atom. The B3LYP-LOC
energy of a charged molecule is given by the full suite of
LOC molecular corrections as specified in the original LOC
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work,2a in addition to those corrections defined for the
charged species.2b

The original B3LYP-LOC work noted the striking similar-
ity in the atomization energy errors as a function of valence
bond structures, using this as the basis for the development
of the LOC methodology. An investigation of the errors in
EA and IP evidences another set of striking patterns, enabling
a facile extension of the previous LOC methodology to these
charged species.

For a complete discussion of all the parameters available
for IP and EA calculations, the reader is referred to the
relevant work,2b while those IP and EA parameters employed
in this work are discussed below. These include corrections
for delocalization of positive charge and for the removal or
addition of an electron from an atomic or molecular orbital.
The specific implementation of these parameters is discussed
in Sections II.D.1 and II.D.2 for enthalpies of ionic reactions
and in Sections III.B and III.C for barrier heights of ionic
reactions. For cationic reactions, corrections for delocaliza-
tion of positive charge included IP_D_A_A-H and
IP_D_A_A-B. These correct for the delocalization of
positive charge on an atom (A) through neighboring electron
density from adjacent A-H and A-B bonds, respectively.
Cationic reactions also necessitated corrections for the
removal of an electron from an atomic orbital. These included
IP_P3p_A/M and IP_P2p_M for the removal of an electron
from a paired 3p or hybrid 3p orbital in a free atom or
molecule and from a paired 2p-hybridized orbital in a
molecule, respectively. Lastly, anionic reactions required
corrections for the addition of an electron to an unpaired 2p
orbital on an atom (EA_AO_U2p) or to the molecular orbital
of a first-row atom with a localized radical and no adjacent
multiple bonds (EA_R1_noMB).

The parameters from the IP/EA model2b are used in the
present work without any modification. As is noted below,
there are a few special cases (such as azides) where defining
new parameters would likely reduce errors. In spite of this,
we do not believe that the current data set is sufficiently large
or diverse to justify such development at this time. As more
data becomes available (via either experiments or calcula-
tions), increases in the number of parameters can be
considered.

II.C. Transition Metals. The B3LYP-LOC methodology
has also been successfully extended to transition-metal
containing systems2d in which a data set of 36 experimental
atomic energies and 71 bond dissociation energies were
employed. Sets of 10 and 21 parameters were built to correct
for atomic energy and bond dissociation energy errors,
respectively, resulting in a MUE decrease from 7.7 to 0.4
kcal/mole for atomic data and 5.3 to 1.7 kcal/mole for bond
dissociation data. This initial model is based upon a wide
range of excitation energies, IPs, and bond energies gathered
from experimental gas-phase measurements. Coupled cluster
calculations on transition-metal species can be problematic;
nonetheless, we provided benchmark coupled cluster calcula-
tions that agreed reasonably well with experiment for various
metal diatomic species. Further, this work shows that the
dominant sources of error are qualitatively analogous to those
identified in the previous B3LYP-LOC publications2a-c and

corrects for them accordingly, employing phenomenologi-
cally similar reasoning.

While the results contained within this work on transition
metals are highly encouraging, they do not represent a
complete treatment of transition metals containing systems.
As most gas-phase bond energy data exist primarily for
metals in their neutral state or as singly charged cations and
metals with low coordination numbers, the dataset was
limited to these types of systems. Obviously, a more complete
treatment should include transition metals with higher
coordination numbers and oxidation states, these being highly
common in various biological systems. However, we reserve
this endeavor for a subsequent publication. The present paper
does not consider any transition-metal-containing reactions,
although such systems will be examined in future efforts.

II.D. Enthalpy of Reaction. The most recent B3LYP-
LOC work2c demonstrates that this methodology is robust
across different basis sets [6-31G*, 6-311++G(3df,3pd), cc-
pVTZ, and aug-cc-pVTZ] and reaction types (atomization
reactions and molecular reactions). This work further dem-
onstrates a reduction in the MUE from 4.7 to 0.8 kcal/mole
over B3LYP for a test set of 70 molecular reactions [at the
B3LYP-LOC/6-311++G(3df,3pd) level]. Our series of
works2 show that the systematic errors native to B3LYP
make it particularly well suited to the LOC scheme.
Importantly, some modern functionals perform noticeably
better than B3LYP. Even so, their errors, still being non-
negligible, are more random and, hence, are harder to treat
by such trivially defined parameterizations. Several well-
known functionals (SVWN, BLYP, BPW91, etc.) were
investigated in this regard. Furthermore, the modern M05-
2X16 and M06-2X17 functionals were also combined with
the LOC scheme. While uncorrected B3LYP is outperformed
by M05-2X, which is, in turn, outperformed by M06-2X,
neither of these new functionals integrates as favorably with
the LOC methodology as B3LYP for calculation of reaction
enthalpies. While non-trivial improvements in performance
are seen for M05-2X-LOC and M06-2X-LOC (where the
LOC parameters are optimized for each functional individu-
ally) over uncorrected M05-2X and M06-2X, they are both
consistently outperformed by B3LYP-LOC, which makes it
the best method of the three for computing reaction enthal-
pies. This is not to imply that B3LYP is an inherently better
functional than M05-2X or M06-2X when all are in their
uncorrected forms. Nor does it imply that other functionals
we have not yet tested might not produce better results than
B3LYP when combined with our LOC methodology. This
is a point we intend to examine in future publications.
Further, we have provided a complete prescription in this
publication, and the others,2a-d for application of our LOC
scheme such that other researchers may investigate our LOC
scheme with other functionals, if they so desire.

On that note, we have not yet explored the possibility of
coupling our LOC scheme with various screened hybrids
such as the Heyd-Scuseria-Ernzerhof (HSC) functional24

for the treatment of large molecules. Nonetheless, this
presents a promising approach to further treating systematic
errors found in DFT, as screened hybrids attenuate those
errors found at relatively long length scales (>5 Å), and our
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LOC approach corrects for those at shorter length scales.
We reserve this endeavor for future publications.

In order for a method to be physically viable, optimal
results should emerge as the basis set is converged. This
convergence is observed for the B3LYP-LOC approach; the
MUE is, in fact, decreased as the basis set size is increased.
This represents substantive evidence for the chemical validity
of the LOC methodology and interpretation.

Importantly, this most recent work is the first instance in
which an automated protocol is employed to assign the LOC
parameters and corrections, in contrast to the hand assign-
ments performed in previous works. Specifically, for any
reaction given in SMILES format, the total correction to its
reaction enthalpy is computed automatically according to the
valence bond structure given. This is an important step
forward in the process of making the methodology automated
and accessible to a wider audience.

II.D.1. Enthalpy of Reaction for Neutral Reactions. The
LOC-corrected enthalpy of reaction can be calculated in a
straightforward fashion using the standard B3LYP-LOC
parameters and is done just as in ref 2c. The sum of the
corrections for the reactant(s) is subtracted from the sum of
corrections for the product(s), and this total correction is then
added directly to the B3LYP enthalpy of reaction to yield
the B3LYP-LOC enthalpy of reaction.

II.D.2. Enthalpy of Reaction for Ionic Reactions. Imagine
an anionic SN2 reaction:

where Nu, R-LG, and LG represent the nucleophile,
electophile, and leaving group, respectively. This may
equivalently be written as a series of reactions:

Reaction (a) and (d) are described by the EA of Nu° and
LG°, respectively. EA is defined as

for the reaction:

Note that this thermodynamic property is defined as energy
(reactants) - energy (products), opposite from other ther-
modynamic properties, which are defined as energy (product)
s energy (reactant).

Each of these sub-reactions will have associated with it a
certain correction due to adding or removing an electron.
Specifically:

For reaction (a), the EA correction is added to the other
terms. While reaction (a) does not match eq 2 in form, its
reaction enthalpy does match that of eq 1, therefore, the EA
correction should be added to the other terms. Conversely,
the enthalpy for reaction (d) is defined opposite that of eq 1,
and therefore, the EA term is subtracted from the others.
Note that reactions (b) and (c) contain only neutral species
and are, therefore, completely described by the original suite
of LOC parameters.2a

Combining all the corrections for (a) - (d) gives a total
correction:

Obviously, this is not limited in application to just anionic
SN2 reactions but can be applied to all anionic reactions.
Also, cationic reactions are treated by the following formula
using the same logic:

III. Development of a B3LYP-LOC Model for
Barrier Heights

III.A. Overview. The B3LYP-LOC methodology has
been well described for ground states,2a-d but it has yet to
be applied to transition states. As a first approximation, we
assume, for purposes of estimating the valence bond states
needed to assign correction parameters, that all transition
states lie exactly mid-way along the reaction coordinate
connecting product and reactant. Specifically, if a bond has
an order of 1 (single bond) in the reactant and 2 (double
bond) in the product, it is assigned a bond order of 1.5 in
the transition state. Similarly, an atom with hybridization
sp3 in the reactant and sp2 in the product is assigned a
hybridization of sp2.5 in the transition state. Obviously, this
assumption is crude and is likely to lead to less than optimal
results in many cases. Therefore, it is desirable to develop a
continuous functional form of the B3LYP-LOC correction
such that the entire reaction coordinate may be mapped,
better accommodating asynchronous transition states. Yet,
we reserve this for a subsequent publication and use the
approximation here to show the validity, applicability, and
power of the model, even in its crudest form.

Where possible, the previously developed B3LYP-LOC
parameters are assigned to the transition state. For example,
a carbon-carbon bond that maintains its bond order in the
reactant and transition state will be assigned the standard
parameter, MSBC (medium single-bond correction), in both.
After assigning these parameters, parameters specific to

Nu- + R-LG f LG- + R-Nu

(a) Nu- f Nuo + e-

(b) R-LG f Ro + LGo

(c) Ro + Nuo f R-Nu

(d) LGo + e- f LG-

EA(Xo) ) energy(Xo) - energy(X-) (1)

Xo + e- f X- (2)

(a) corr(Nuo) - corr(Nu-) + corr(EA, Nuo)

(b) corr(Ro) + corr(LGo) - corr(R-LG)

(c) corr(R-Nu) - corr(Ro) - corr(Nuo)

(d) corr(LG-) - corr(LGo) - corr(EA, LGo)

corr(anionic, SN2) ) corr(R-Nu) + corr(LG-) -

corr(Nu-) - corr(R-LG) + corr(EA, Nuo) -
corr(EA,LGo) (3)

corr(cationic, SN2) ) corr(R-Nu+) + corr(LG:) -

corr(R-LG+) - corr(Nu:) + corr(IP,Nu:) - corr(IP,LG:)
(4)
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transition states must be assigned. These new parameters are
given in Table 1.

The environmental single-bond correction (ESBC) was
previously described.2a,c Yet, it is included in Table 1, as its
definition has been modified, so that it can be applied in an
automated fashion to the transition states as well. As
previously defined, ESBC is applied additively for every
single bond A-B (where neither A nor B is fluorine or
hydrogen nor is the single bond part of a three- or four-
membered ring) with a neighboring single bond, A′-A-B
(A′ not fluorine or hydrogen). In this most recent imple-
mentation, for every A-B bond with approximate bond order
n + 0.5 (n ) 0, 1), with neighboring bond A′-A, 1 ESBC
is applied if A′-A is a single bond. Likewise, only 0.5 ESBC
is applied for A′-A having approximate bond order n +
0.5 (n ) 0, 1). The original restriction applies in that A-B,
regardless of bond order, cannot be a bond in a three- or
four-membered ring. This is presumably because the bond
angles in these three- or four-membered rings are too small
to appreciably allow for electronic excursions that ESBC was
designed to treat. Therefore, transition states which also
display this same characteristic small bond angle (< 94.0°)

do not receive ESBCs either. Specifically, consider four
atoms connected by single bonds, A-B-C-D. If bond angle
ABC is < 94.0°, neither bond AB nor bond BC may count
as a base orbital for ESBCs. Yet, bond CD is still treated in
the normal fashion s receiving 1 ESBC for its neighboring
BC bond. Via this rational, the bonds of the bridge in the
transition states for reactions 1 and 2 in addition to all bonds
of the partial three- or four-membered rings in the transition
states for reactions 8, 10, 101, and 102 were not assigned
ESBCs.

After assigning all the corrections to the reactant and
transition states, the difference in these corrections may then
be applied directly to the B3LYP barrier height to obtain
the B3LYP-LOC barrier height in an additive fashion. This
is straightforward for neutral reactions. Anionic and cationic
reactions require one additional correction each and are
discussed in the following sections.

The original B3LYP-LOC scheme2a provides corrections
for various hybridization states of atoms, including N/P_sp,
N/P_sp2, etc. The transition-state parameters unsurprisingly
take on similar values to the previously defined ones. For
example, N/P_sp1.5 has a value of 4.47 kcal/mole, which is

Table 1. B3LYP-LOC Parameters for Transition States

parameter description value (kcal/mol)

N/P_sp1.5 applied for every N or P atom with hybridization that can be
considered partly sp and partly sp2

4.47

N/P_sp2.5 applied for every N or P atom with hybridization that can be
considered partly sp2 and partly sp3

4.03

O_sp2.5 applied for every O atom with hybridization that can be considered
partly sp2 and partly sp3

2.02

MSBC/LSBC_0.5 applied for every bond of approximate order 0.5 between any
atom pairs falling within the description of MSBC and LSBC.
Specifically, C · · ·C, C · · ·Cl, N · · ·N, O · · ·O, N · · ·O, F · · ·F, O · · ·Cl,
Na · · ·Na, Si · · ·C, S · · ·C, S · · ·O, S · · ·N, any pair of second-row
atoms other than NaCl

-1.82

AA_1.5 applied for every bond with approximate bond order 1.5 -0.36
AA_2.5 applied for every bond with approximate bond order 2.5 -0.91
HH_0.5 applied for every H-H bond with approximate bond order 0.5 0.55
H_dival applied for every transition state in which a hydrogen atom is

partly bonded to two atoms, at least one of which is neither carbon
nor hydrogen

3.79

ESBCa applied for every bond A-B (of order 0.5, 1, or 1.5; where neither
A nor B are fluorine or hydrogen, and the bond is not part of a
three- or four-membered ring) with neighboring single bond A′-A
(where neither A nor A′ is fluorine or hydrogen); likewise, 0.5
ESBC is applied for every neighboring bond A′-A (where neither
A nor A′ is fluorine or hydrogen) with bond order 0.5 or 1.5, with
the same restrictions on A-B stated above.

-0.50b, -0.51c

OCT_EXPa defined previously for Cl, P, or S atoms that have a valence shell
expansion beyond the usual octet; also applied to any transition
state in which an atom (other than hydrogen) experiences an
increase in coordination number beyond its octet; this includes the
pseudo-penta coordinate transition state of SN2 reactions, for
example.

4.92b, 3.54c

RHa defined previously to apply to every atom on which the localized
singly occupied orbital is bonded to a hydrogen atom; extended
here to also apply to any atoms of the transition state with partial
radical character; applied additively for each unpaired electron and
each hydrogen.

0.55b, 0.34c

RAa previously assigned for every atom (of the first or second row) with
a localized radical and a single or double bond to another atom;
extended here to include all atoms of the transition state with
partial radical character; applied additively for each unpaired
electron and each bonded first- or second-row atom.

1.62b, 1.71c

a This parameter was first defined in ref 2a, and here its definition is simply extended to include transition states. b As defined in ref 2a
for the 6-311++G(3df,3pd) basis. c As defined in ref 2a for the cc-pVTZ++ basis.
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similar in value to that of N/P_sp2 at 4.31 kcal/mole (for the
6-311++G(3df,3pd) basis set, for example). N/P_sp2.5 (4.03
kcal/mole) is intermediate in value between N/P_sp2 and
N/P_sp3 with values of 4.31 and 3.00 kcal/mole, respectively.
It is not necessarily true that the parameter N/P_spn.5 must
be intermediate in value between that of N/P_spn and
N/P_spn+1 for it to be physically viable; the formation of a
transition state is a complex change in electronic structure
in which various competing factors will play a role in
determining the error in the original B3LYP calculation, and
the empirical corrections absorb all of these effects simul-
taneously. The original DFT-LOC paper emphasized the
transformation of the lone pair in atomic nitrogen from the
more localized 2s orbital to a significantly more extended
sp-, sp2-, or sp3-hybridized orbital, as a qualitative rational-
ization of the overbinding associated with achieving the
standard hybridization states for nitrogen. Yet, when a
transition state is formed, the first shell of neighboring atoms
and their distance distribution differs from any ground state,
and the effects so introduced can modify the observed DFT
error, in a direction that is not easy to infer from the structural
transformation. Finally, the original B3LYP-LOC work treats
nitrogen and phosphorus equally, finding no appreciable
degradation in performance upon combining the two. This
is easily justified by the similarity of phosphorus and nitrogen
in electronic structure. Accordingly, we have chosen to
combine the corresponding nitrogen and phosphorus correc-
tions into N/P_spn.5. Although there are no cases of phos-
phorus atoms that fit into the N/P_sp1.5 category and only
one transition state with phosphorus that fits into the
N/P_sp2.5 category, we assert this is a likely categorization
for any possible future occurrences based upon the prece-
dence set in the previous work.2a

Like the transition-state parameters for nitrogen of inter-
mediate hybridization, O_sp2.5 (2.02 kcal/mole) is similar in
value to the previously defined parameters, O_sp2 and O_sp3,
which have values of 0.95 and 1.67 kcal/mole, respectively.

MSBC/LSBC_0.5 (-1.82 kcal/mole) also has a value
similar to those originally defined for MSBC and LSBC,
-1.92 and -2.49 kcal/mole, respectively. The original
B3LYP-LOC work2a shows a clear correlation between the
ratio of orbital size to bond length and the corresponding
correction for each bond. Specifically, the corrections for
heavy atom pair short single bonds (SSBC), medium single
bonds (MSBC), and long single bonds (LSBC) are -1.26,
-1.92, and -2.49 kcal/mole, respectively. The longer bond
length relative to the orbital size bestows a greater nondy-
namical correlation energy onto the electron pair in the longer
bond than would be if the bond were shorter, necessitating
a correction of greater magnitude. We see that the value for
MSBC/LSBC_0.5 is smaller than both MSBC and LSBC in
magnitude, despite the fact that the bond length is clearly
larger. Yet, while the bond length is larger for such “half
bonds”, the orbital size also experiences a concomitant
increase in size (with respect to “full” single bonds). Consider
for example the reaction H2CdCH2 + CH3° f H2C°-
CH2-CH3. While the “half” bond between the ethene and
methyl in the transition state is longer than the corresponding
single bond, its orbital size is also larger. Whereas the

corresponding C-C bond is comprised of two sp3 orbitals,
this “half” bond is comprised of two orbitals intermediate
in hybridization between pure p orbitals (as in the reactants)
and sp3 orbitals (as in the products), making it comparatively
larger. Accordingly, the ratio of orbital size to bond length
does not vary greatly between the “full” medium and long
single bonds and the medium and long single “half” bonds.

A second argument (not contradictory to the discussion
above s the final parameter value reflects both chemical
effects in combination) is that, as any bond is driven to
infinite separation, the correction parameter for the bond must
go to zero. When atom B is infinitely far from atom A,
excursions of the now unpaired electrons on atom A toward
atom B (and vice versa) no longer deviate from those seen
in an atom; thus, the estimate of the two particle correlation
function by the DFT functional cannot be presumed to have
the systematic error inferred for C-C, C-Cl, etc., bonds.
At what point the correction term peaks cannot be rigorously
determined without performing accurate high level ab initio
computations of the full bond-breaking curve and comparing
the DFT results, but it seems reasonable to propose that the
maximum in fact occurs close to the equilibrium bond length
and prior to the length associated with the transition-state
structure (at least in a typical transition state; early transition
states might exhibit a systematically different trend, a subject
we leave to future investigation). The fact that we are able
to combine the MSBC and LSBC parameters here (no
transition-state bond would be characterized as “short”) and
that the value obtained is smaller than the MSBC equilibrium
value provides strong evidence that this hypothesis is correct.
This transition-state bond correction parameter is employed
in virtually every molecule in the training set, and there is
often more than one bond per test case; thus, the value of
the parameter has a major effect on the average error. The
successful use of a single parameter for all single bonds
between heavy atoms in the transition state and the low
average error and number of outliers obtained by doing so
provides confidence that this parameter is not overfit, as does
its chemically consistent, readily interpretable value (per the
two arguments made above).

The parameter AA_1.5 is applied for all bonds of
approximate bond order 1.5. Its value (-0.36 kcal/mole) is
similar to the value for double bonds (-0.53 kcal/mole),
reflecting the fact that correlation between multiple orbitals
in a bond exerts a substantial effect on the correction term
(in a fashion that is more difficult to dissect than the
corresponding effects for single bonds). This value most
likely corresponds to the reorganization of electrons from
the localized p orbitals of the double bond to the localized
spn bonds. The precise value obtained, while more difficult
to interpret than the transition-state single bond value, is at
least reasonable. More test cases will be required to
investigate whether the fitted parameter obtained here is
unduly influenced by the specific set of bonds with bond
order 1.5 found in transition states for the current data set.

Similarly, AA_2.5, with a value of -0.91 kcal/mole, is
employed for all bonds with approximate bond order 2.5.
The original B3LYP-LOC work gives optimized values of
-0.53, -1.31, and 1.51 kcal/mole for double bonds (DBC),
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nonpolar triple bonds (TBNPOL), and polar triple bonds
(TBPOL), respectively. As in the case of AA_1.5, an obvious
rationale for this parameter’s exact value is lacking. Notably,
this correction is employed many times for the dipolar
cycloaddition reactions with azides. In fact, this parameter
is employed exclusively for the treatment of dipolar cy-
cloaddition transition states with the lone exception of the
transition state for reaction 55 and 56, carbon radical
reactions. Accordingly, this parameter may in actuality be
capturing effects unique to the azides employed in the dipolar
cycloadditions (which present a challenge for localized
treatments due to their nonlocal nature) rather than a
characteristic of bonds with an approximate order of 2.5.
Further investigation will be necessary to determine just how
general this parameter is and whether additional parametriza-
tion is necessary for other chemistries containing transition-
state bonds intermediate between double- and triple-bond
character. In contrast, we have much more confidence in the
MSBC/LSBC_0.5 bond parameter, which covers many
different chemistries, as discussed above.

All hydrogen-hydrogen bonds of approximate bond order
0.5 are assigned the parameter HH_0.5 (0.55 kcal/mole). The
previous B3LYP-LOC work2a defined a special parameter
for diatomic hydrogen with a value of 0.25 kcal/mole. The
value for HH_0.5 is larger despite the fact that it will
necessarily vanish as the bond order approaches zero. The
reason for this is clear if one considers the relevant transition
states, such as that of the reaction H + H2 f H2 + H, for
example.18 These transition states are highly analogous to
the well-described H2

+ molecule.11 In such cases, ap-
proximately one electron is shared between the two hydrogen
atoms. Here the self-interaction term does not serve to model
nondynamical correlation but instead engenders a clear
source of systematic error.3 Further, the magnitude of this
error becomes larger as the bond is stretched. It is for this
reason that the value of the HH_0.5 parameter is larger than
that of the value assigned for diatomic hydrogen alone.

The importance of environmental correction terms has
already been noted. For example, in a doubly occupied
localized orbital, one electron might make excursions into
the area of other localized orbitals in order to avoid the
second electron of the same orbital. Accordingly, the
availability of neighboring bonds to accommodate such
excursions is included in the B3LYP-LOC scheme via
introduction of the environmental single-bond correction,
ESBC. While not as prevalent, such excursions are also
possible in the partial bonds of transition states. Accordingly,
excursions into partial bonds of approximate bond order 0.5
and 1.5 are treated with 0.5 ESBC corrections. Of course,
the coefficient of 0.5 for the ESBC correction reflects the
assumption that the transition state lies exactly midway along
the reaction coordinate and can be fine-tuned to reflect exact
transition-state location in the continuous implementation of
the correction scheme, reserved for future work. Environ-
mental bond corrections are not applied for double or triple
bonds. Accordingly, partial environmental corrections for
partial bond transition states are only applied for bonds of
approximate order 0.5 and 1.5.

The original B3LYP-LOC work defined a parameter for
any hypervalent atom, OCT_EXP, such as seen in ClF3. The
large value of this parameter compensates for a very
substantial overestimation of nondynamical correlation in
these highly electron dense systems. Notably, this same
parameter accurately describes the pseudo-pentacoordinate
transition state of the SN2 reaction. Here a hypervalent carbon
atom is coordinated to five different atoms with a concomi-
tant increase in electron density and overestimation of
nondynamical correlation analogous to that of the ClF3 case,
for example. Accordingly, all transition states with hyper-
valent non-hydrogen atoms (only SN2 reactions on carbon
centers in this work) are assigned this parameter.

While hypervalent heavy atoms of the transition state
receive the OCT_EXP parameter, hypervalent hydrogen
atoms receive the H_dival parameter. Interestingly, both
OCT_EXP and H_dival are similar, taking on values of
3.54 to 4.64 kcal/mole (depending upon basis set) and
3.79 kcal/mole (independent of basis set), respectively.
This similarity is not fortuitous, as these parameters arise
from the same phenomenon: overestimation of nondy-
namical electron correlation due to localized high electron
density. Accordingly, the H_dival parameter is only
assigned when the hydrogen atom is flanked by at least
one atom that is neither hydrogen nor carbon. This leads
to a clear improvement in performance and can be justified
based upon consideration of the virtual orbitals. Transition
states in which the hydrogen atom is flanked by only
carbon and/or hydrogen atoms, such as CH3 · · ·H · · ·CH3,
are well described without consideration of virtual orbitals.
In molecules such as CH4 and H2, where the HOMO-
LUMO gaps are larger [11.7 eV for methane at the
B3LYP/cc-pVQZ(-G) level for example], the virtual
orbitals do not contribute substantially to a complete
description of the electronic state. Accordingly, B3LYP
does not produce substantial errors in describing such
systems. Nevertheless, transition states in which a hydro-
gen atom is sandwiched between at least one atom other
than hydrogen or carbon, such as HO · · ·H · · ·CH3, have a
much larger error. Because the HOMO-LUMO gap in
these heavy atoms (O, P, N, S, etc.) is smaller [8.9 and
8.0 eV for water and ammonia at the B3LYP/cc-pVQZ-
(-G) level, respectively], excitations of electrons in the
heteroatom lone pairs into these virtual orbitals make a
more significant contribution to the electronic state. The
octet expansion parameter (OCT_EXP) is interpreted
similarly; B3LYP does not accurately capture the effect
of virtual orbitals for hypervalent atoms, leading to the
large errors seen in these cases. In essence, hypervalent
compounds cannot place all of their valence electrons into
the standard valence shell orbitals and accessing virtual
lone-pair orbitals in the first shell of atoms around the
central atom (or in the central atom itself) is the most
economical means of distributing electrons in structures
of this type. The low-energy gaps of such states then
appear to cause problems for B3LYP, leading to overbind-
ing of the corresponding structures.

III.B. Barrier Height Corrections for Anionic Transi-
tion States. Consider the anionic SN2 reaction:
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where again, Nu, R-LG, and LG refer to the nucleophile,
electrophile, and leaving group, respectively. Here, the
corrections to the transition state are applied in the usual
fashion. Yet, another parameter is added to the calculated
barrier height to account for the negative charges:

The coefficient of 0.5 is added to reflect the assumption
that the negative charge in the transition state is equally
distributed between the Nu and the LG. The above equations
follow readily from equation (3). Obviously the parameter
of 0.5 can be tuned to reflect the location of the transition
state along the reaction coordinate; earlier transition states
weighing the term corr(EA, LG°) more heavily and later
transition states weighing corr(EA, Nu°) more heavily. This
is reserved for subsequent publication in which a continuous
functional form is developed.

III.C. Barrier Height Corrections for Cationic Transi-
tion States. Analogously, imagine a cationic SN2 reaction:

where again, Nu, R-LG, and LG refer to the nucleophile,
electrophile, and leaving group, respectively. Here, the barrier
height also receives an additional correction derived from
equation (4) where the assumption is made that half of the
positive charge resides on the Nu, while the other half resides
on the LG in the transition state:

Just as with anionic transition states, the coefficient of 0.5
can be tuned once a continuous functional is developed.

III.D. Computational Methods. All stationary points
(reactants, products, and transition states) were optimized
at the UB3LYP/6-31G* level using the JAGUAR ab initio
quantum chemistry code.19 Vibrational frequencies were also
calculated and scaled by 0.9806 (as suggested by Scott and
Radom20) to obtain the zero-point energy (ZPE) and enthalpy
of each species. Single-point calculations were then per-
formed at the 6-311++G(3df,3pd) level for neutral and
cationic reactions and at cc-pVTZ++ level for anionic
reactions. The total enthalpy of each species x (Hx) was then
taken as the sum of the SCF energy computed in the higher
basis [6-311++(3df,3pd) or cc-pVTZ++] and the enthalpy
and ZPE computed in the 6-31G* basis. The uncorrected
B3LYP reaction enthalpy is then given by

The uncorrected B3LYP barrier height is also given by

(Note that, in many publications, barrier height is used
interchangeably with Arrhenius activation energy. It is
important to recognize that these two quantities differ by a
factor of nRT. Barrier height is used exclusively here.)

From these, the B3LYP-LOC reaction enthalpy and barrier
height are readily obtained by a simple correction term:

Lastly, each of the corrx terms is obtained simply from
the sum of all corrections for species x, as assigned from its
valence bond structure and as given by the full suite of LOC
parameters.2a-d The reader is referred to the Supporting
Information for additional details and examples.

IV. Results and Discussion

The B3LYP-LOC methodology as described in Section III
was applied to a large dataset of 105 unique barrier heights
and 69 enthalpies of reaction for which ab initio or
experimental data were available. This dataset, shown in
Figure 1, is notable for the many different reaction types,
including cycloadditions, electrocyclizations, dipolar cy-
cloadditions, SN2, carbon radical, and hydrogen radical
reactions. After applying the original B3LYP-LOC param-
eters, as previously developed,2a the new parameters were
assigned, and their values (shown in Table 1) were deter-
mined in a linear-least-squares fashion.

Table 3 summarizes the results of applying the B3LYP-
LOC methodology to this large dataset and compares
uncorrected B3LYP to B3LYP-LOC. The B3LYP-LOC
method performs significantly better than the uncorrected
B3LYP, with essentially zero additional computational cost.
The error in the MUE of the entire dataset is reduced to
near-chemical accuracy for both reaction enthalpies and
barrier heights. Further, Table 3 shows that the MUE is
reduced across nearly all categories for both the reaction
enthalpy and barrier height, again often achieving chemical
accuracy. This is also shown visually in Figures 2 and 3.

For reaction enthalpies, the MUE is reduced nearly 20-
fold for cycloadditions, 6-fold for dipolar cycloadditions, and
4-fold for both carbon radical and electrocyclic reactions.
The same trend holds for barrier heights in which B3LYP-
LOC displays up to a 7-fold improvement in MUE over
B3LYP.

A few exceptions exist in which B3LYP-LOC displays
greater error than B3LYP. These include the enthalpy of SN2
reactions and the barrier heights for electrocyclizations and
sigmatropic shifts. While B3LYP-LOC performs less favor-
ably than B3LYP for the SN2 reactions, this degradation is
relatively small in magnitude, especially when compared to
the remarkable improvement displayed by the other reactions
subcategories when employing B3LYP-LOC. It is also true
that B3LYP outperforms B3LYP-LOC when calculating
barrier heights for both electrocyclizations and sigmatropic
shifts. Yet, because of the limited availability of benchmark
data, both of these reaction subcategories only contain three
reactions each. Further, B3LYP, perhaps fortuitously, per-

Nu- + R-LG f LG- + R-Nu

corr(BH) ) 0.5[corr(EA, Nuo) + corr(EA, LGo)]

Nu: + R-LG+ f R-Nu+ + LG:

corr(BH) ) 0.5[corr(IP, Nu:) + corr(IP, LG:)]

∆Hrxn,B3LYP ) ∆Hproduct - ∆Hreactant

∆HB3LYP
‡ ) ∆Htransition state - ∆Hreactant

∆Hrxn,B3LYP-LOC ) [∆Hproduct + corrproduct] - [∆Hreactant +
corrreactant] ) ∆Hrxn,B3LYP + corrproduct - corrreactant

∆HB3LYP-LOC
‡ ) [∆Htransition state + corrtransition state] -

[∆Hreactant + corrreactant] ) ∆HB3LYP
‡ + corrtransition state -

corrreactant
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forms anomalously well for these small datasets. Therefore,
additional reactions within these subcategories should be
investigated once benchmark data becomes available to truly
gauge B3LYP-LOC’s performance for these reaction types.

One particular type of chemistry requires some explicit
comments. Our dataset contains several azides: hydrazoic acid
(N3H), methylazide (N3CH3), formylazide (N3CHO), phenyl-
azide (N3C6H5), and methane sulfonylazide (N3SO2CH3). Each
of these possesses, at least two unique resonance forms shown
in Figure 4. Therefore, we must decide upon one resonance
structure for each in order to successfully apply the LOC
scheme.

Ab initio or experimental enthalpies of formation can be
located for only hydrazoic acid and methylazide.21 Compar-
ing the ab initio numbers to those computed with B3LYP-
LOC shows clearly superior performance when resonance

structure (a), as opposed to (b), is utilized. As argued in ref
2a, B3LYP-LOC analysis can be viewed in difficult cases
like this one as implying the dominance of a particular
resonance structure.

With this in mind, all azides were assumed to have the
resonance structure (a). Yet, other resonance structures need
to be considered for some other azides. Specifically, in
accordance with previous B3LYP-LOC work,2a methane
sulfonylazide is taken as shown in Figure 5.

Lastly, formylazide requires even further analysis. We
propose that it deviates from resonance structure (a) and
instead adopts the form shown in Figure 6. We make this
assertion given that the reaction enthalpy MUE of the
formylazide-containing reactions drops from 2.6 or 3.5
kcal/mole to 1.2 kcal/mole using this structure. One can
also argue that this is the best resonance structure, as the

Figure 1. Reactions of the test set.
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negative charge is localized on the most electronegative
element. It should also be noted that this molecule was
assigned a charge transfer (CT) parameter.

In conclusion, we recommend that resonance structure (a)
be employed for all azides N3R unless the negative charge
may be delocalized through the R group to a more electro-
negative element than nitrogen when employing structure
(b). Note that phenylazide was treated successfully with
resonance structure (a) despite the fact that (b) would allow
for delocalization of charge through the phenyl ring. Argu-
ably, such a charge delocalization is not the dominant

resonance structure, and a phenyl group does not play the
same role as the aldehyde.

Unfortunately, while Mulliken charge analysis was em-
ployed to probe for dominant resonance structures for all of
these azides, the results were highly inconclusive as they
depended highly on basis set and did not seem to converge
with higher levels of theory. This dependence is entirely
consistent with the observations of other researchers.23

Accordingly, no conclusions were drawn from this data.
In general, any successful parameterization method must

guard against over-fitting. We put forward that the large data
set employed (>100 barrier heights) and comparatively small
number of parameters developed (8) makes the possibility
of over-fitting small. Nonetheless, to confirm this hypothesis,
we have divided the data set into roughly equal halves, using
each half independently as a training set. The parameter
values obtained from these two different sets were then
applied to the other half of the data to give MUEs of 1.1 to
1.4 kcal/mole. This value should be compared to the MUE
derived using the whole dataset as a training set, 1.1 kcal/
mole. This provides significant evidence that overfitting is
not a major problem, at least as judged by the present data
set. As noted above, there may be specific cases where
additional parameters will be required as new types of
structures are investigated. Lack of transferability, a problem
that is fundamentally different from overfitting, can be fully
addressed only by using substantially larger and more diverse
data sets.

The results for reaction enthalpies presented in Table 3
require the use of no additional adjustable parameters and,
hence, can be regarded as a true test set for the B3LYP-
LOC methodology developed previously. (All reaction
enthalpies and barrier heights are given in the Supporting
Information.) Some of the reactions can be derived from the
atomization reactions of the G2/G3 database and, hence,
cannot be used for this objective. If we consider only
reactions that cannot be derived from the G2/G3 atomization
reactions (52 in all), the average MUE for B3LYP and
B3LYP-LOC enthalpies of reaction are 7.4 and 1.1 kcal/
mole, respectively. Note that this B3LYP-LOC reaction
enthalpy MUE is identical to the MUE for all reactions (1.1
kcal/mole) and also to the average error for the training set,2a

on the order of 1.0 kcal/mole. Independent of the validity of

Figure 2. Mean unsigned error (MUE) for enthalpy of reaction
(∆Hrxn) for various reaction types. B3LYP-LOC is shown in
gray, while uncorrected B3LYP is shown in blue.

Figure 3. Mean unsigned error (MUE) for barrier heights
(∆H‡) for various reaction types. B3LYP-LOC is shown in gray,
while uncorrected B3LYP is shown in blue.

Figure 4. Resonance structures for a general azide.

Figure 5. Methane sulfonyl azide.

Figure 6. Formylazide.

Table 2. Experimental and Calculated Enthalpies of
Formation

enthalpies of formation (kcal/mole) hydrazoic acid methylazide

Ab initio (G2 theory) 70.4 71.0
B3LYP 59.4 62.1
B3LYP-LOC (a) 71.2 73.1
B3LYP-LOC (b) 65.1 67.1
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the transition-state parameters we have derived here, these
results suggest that, for reaction thermochemistry, B3LYP-
LOC will perform at the level of near-chemical accuracy
within its current domain of applicability (molecules com-
posed of first- and second-row atoms). Furthermore, the
largest absolute error in reaction energy is 3.3 kcal/mole,
whereas the largest absolute B3LYP error is on the order of
19 kcal/mole (and there is a significant number of reactions
with errors of this order of magnitude). The consistency of
the methodology, across a wide range of chemical phenom-
ena and without further parameter adjustment, continues to
be a strong aspect of the approach.

For barrier heights, there is only one reaction with error
greater than 3.5 kcal/mole. Entry 99, CH4 + O (triplet) f
CH3 · + ·OH, has a signed error of 6.3 kcal/mole. Interest-
ingly, the B3LYP error for this reaction barrier is 10.6 kcal/
mole, the largest such error in the entire data set and roughly
3-5 kcal/mole higher than that of comparable radical
reactions in the database. This observation suggests at least
the possibility that there is a problem with the reference data;
if the B3LYP error were more in line with other reactions,
then the B3LYP-LOC error would be much smaller. We plan
to follow up on this point in future work. It is of course also
possible that at least some of the residual errors are a result
of inaccuracies in the reference data as well; unlike the G2/
G3 set of atomization energies, it is not possible to put
rigorous error bars on the reference data for many of the
reactions included here. Nevertheless, the level of agreement,
for an initial effort, is quite satisfactory and encourages us
to continue the development of the B3LYP-LOC model along
the lines discussed in the introduction.

V. Conclusions

The results discussed above confirm that the core B3LYP-
LOC approach provides high-accuracy results for enthalpies
of reaction and introduce, for the first time, a viable model
for obtaining barrier heights with this methodology. The
barrier height results are comparable in accuracy to what is
obtained for enthalpies of reaction, and they display little
fluctuation in performance across a diverse set of transition-
state structures and reaction chemistry. The ratio of adjustable
parameters (8) to new data points (105) is reasonable, and
the parameters obtained from fitting are physically consistent

with previously developed B3LYP-LOC parameters for
ground-state thermochemistry.

As indicated above, our next objective is to construct a
B3LYP-LOC methodology that is a continuous function of
the coordinates. Now that we have parameters for the key
stationary points, this should be straightforward. We also
intend to assemble a substantially larger data set and to carry
out comparisons using this data set with methods such as
M06-2X and screened hybrids (in both the original and LOC-
corrected forms), which have also shown great promise with
regard to reducing DFT errors. Head to head comparisons
on large and diverse data sets will enable the strengths and
weaknesses of each approach to be examined in detail.
Ultimately, adjustment of both additive empirical valence
bond-type corrections, such as those used here, and intrinsic
DFT functional parameters, as has been carried out quite
effectively by the Truhlar group, is likely to yield the most
accurate and reliable methodology. An effort of this type
will require a significant amount of additional work but does
appear to represent a promising path forward for the long
run. Further, it should ultimately be possible to extend this
methodology to excited states.
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Abstract: Hartree-Fock exchange with a truncated Coulomb operator has recently been
discussed in the context of periodic plane-waves calculations [Spencer, J.; Alavi, A. Phys. Rev.
B: Solid State, 2008, 77, 193110]. In this work, this approach is extended to Gaussian basis
sets, leading to a stable and accurate procedure for evaluating Hartree-Fock exchange at the
Γ-point. Furthermore, it has been found that standard hybrid functionals can be transformed
into short-range functionals without loss of accuracy. The well-defined short-range nature of
the truncated exchange operator can naturally be exploited in integral screening procedures
and makes this approach interesting for both condensed phase and gas phase systems. The
presented Hartree-Fock implementation is massively parallel and scales up to ten thousands
of cores. This makes it feasible to perform highly accurate calculations on systems containing
thousands of atoms or ten thousands of basis functions. The applicability of this scheme is
demonstrated by calculating the cohesive energy of a LiH crystal close to the Hartree-Fock
basis set limit and by performing an electronic structure calculation of a complete protein
(rubredoxin) in solution with a large and flexible basis set.

1. Introduction

The construction of reliable models for the exchange and
correlation energy of electrons is an active research field
within the density functional theory (DFT) community. For
nearly 50 years, new ideas and approximations have been
proposed that increase the accuracy and are improvements
compared to the local density approximation1,2 (LDA).
Nowadays, most new functionals go beyond the semilocal
generalized gradient approximations3-5 (GGAs) by incor-
porating a certain amount of Hartree-Fock exchange (HFX)
or similar nonlocal functionals.6-11,12 Generally, these hybrid
functionals are more accurate than their local counterparts.
Whereas the use of these hybrid functionals is well estab-
lished in the quantum chemistry community for the study
of molecules, condensed phase systems, such as liquids or
solids, are usually treated at a GGA level. Not only is the
cost of computing exchange interactions in large condensed
phase systems significant, the technical difficulty of obtaining
results that are accurate and properly converged cannot be

underestimated in calculations employing periodic boundary
conditions (PBC). In this work, a robust and accurate scheme,
suitable for large condensed phase systems is presented.

In recent work, ref 13, we have presented a linear scaling
implementation of HFX that makes it feasible to perform
large-scale molecular dynamics simulations with hybrid
functionals in PBC. The focus on large systems has guided
several design decisions for the implementation. Atom-
centered Gaussian basis functions are employed, which
makes a linear scaling implementation, based on a screen-
ing with the density matrix elements, relatively straightfor-
ward.14-16 Additionally, large systems can be described
without k-point sampling, and the approach is, thus, Γ-point
only. All algorithms are massively parallel and focus on in-
core operation to allow for thousands of MD steps in a
reasonable time. Our initial implementation of periodic HFX
at the Γ-point has been based on an approach by Challa-
combe and co-workers.17 In this scheme, the minimum image
convention (MIC) is applied at the level of primitives while
computing the four center integrals. This is efficient and has
been shown to accurately converge to reference results as* Corresponding author. E-mail: vondele@pci.uzh.ch.
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the system size is increased.17 However, it has been observed
that this approximation is generally unstable if extended or
flexible Gaussian basis sets are used. The instability is the
result of a spurious minimum in the energy functional,
yielding an unphysical wave function with a total energy
that can be several Hartrees beyond the physical solution.
This is similar to the behavior observed in traditional HFX
calculations that employ a too loose screening threshold. As
will be discussed in more detail below, in the MIC, there is
no screening parameter which can be adjusted to guarantee
stability. The new approach presented here does not employ
the MIC, only requires the Γ-point, and is stable with large
and flexible basis sets. The use of the truncated Coulomb
(TC) operator18 is a key ingredient. All algorithms and
methods presented are implemented within the framework
of the CP2K/Quickstep19,20 program, a freely avaliable
molecular simulation package.

2. The Truncated Coulomb Operator for
Calculations at the Γ-point Using Gaussian
Basis Sets

2.1. Periodic Hartree-Fock calculations. For finite
systems such as molecules, which employ open boundary
conditions, the HFX energy is computed from its definition:

The potential g(|r1 - r2|) ) 1/(|r1 - r2|) ) 1/r12 in
conventional HFX calculations but is commonly replaced
by other operators, such as erfc(ωr12)/r12, exp(-ω2r2) or
exp(-ωr)/r in modern electronic structure theory.7,8,21,22

Computing this energy poses no special problems. In the
condensed phase, the HFX energy must take the periodic
nature of the system into account, and an integration over
k-vectors, which reflects the translational invariance and the
infinite nature of the system, is formally required. In practice,
a finite mesh of k-points is employed, which usually becomes
less dense as the unit cell increases in size. The HFX energy
in periodic systems is, thus, defined as

Where Nk is the number of k-points within the Brillouin
zone, and the integrals are over all space. The wave functions
are assumed to be normalized over the crystal volume NkV,
where V is the volume of the unit cell. This expression,
however, is troublesome to compute. The reason for this is
the integratable singularity at k ) k′, which is related to the
conditionally convergent nature of the integral for that choice
of k-vectors. Several schemes have been developed to obtain
good convergence with respect to the k-point sum.23-27 Of
particular interest here is the method by Spencer and Alavi.18

This method is based on the observation that the TC operator:

yields an expression for the HFX energy that does not exhibit
a singularity at k ) k′, that converges to the exact expression
as Rc goes to infinity, and that becomes increasingly easy to
converge in k-space as Rc becomes smaller. It is intuitive
that, contrary to the Hartree energy, the exchange energy
converges rapidly with Rc for the TC operator. Since the
convergence of the exchange energy is related to the decay
of the density matrix, it will be most rapid for systems with
a large gap. However, this also means that the minimum Rc,
which yields a properly converged exchange energy, is a
system-dependent property. As illustrated in Section 3, the
exchange energy computed with gTC, in open systems or with
full k-point convergence, decreases monotonically to its
limiting value for increasing Rc. Clearly, one can define
truncated versions of other commonly employed operators.
In ref 18, it is demonstrated that it is reasonable to take the
number of k-points as

(see that work for an in-depth discussion). Once Rc is fixed,
eq 4 shows that the Γ-point alone will be sufficient for large
systems, since large systems imply a large V. For a cubic
unit cell with edges of length L, eq 4 suggests that having
Rc < 0.62L is sufficient for Γ-point only sampling. If needed,
sufficiently large systems can always be obtained by replicat-
ing the unit cell in all directions. The Γ-point expression for
the exchange energy is given by

This expression for Ex
Γ looks similar to the one for Ex

open

(eq 1). However, Ex
Γ will diverge for Rcf∞. It has to be

emphasized that only for a finite range of Rc, i.e. sufficiently
small to allow for Γ-point only sampling of the integral, Ex

Γ,
as defined by eq 5, will be a meaningful approximation to
the full k-space integrated HFX energy. A hand-waving
argument for the fact that the Γ-point only expression implies
a limit on Rc can also be made as follows: for well localized
electrons (i.e., if the maximally localized Wannier functions
fit the unit cell), the exchange energy between electrons in
different unit cells of the system is small. However, eq 5
would nevertheless predict a large contribution to the
exchange energy for an electron and its ‘periodic image’ if
Rc is large enough. This spurious ‘self-exchange’ with the
image electron should not be present, and Rc needs, thus, to
be chosen accordingly. Based on this reasoning, a somewhat
more conservative rule than eq 4 for determining the
maximum Rc can be proposed: Rc should be smaller than or
equal to the radius of the largest sphere that fits the unit
cell. This guarantees, for localized electrons, that no interac-
tions with image electrons are possible. For cubic unit cells
this yields Rc e L/2, similar to eq 4, while for orthorhombic

Ex
open ) -1

2 ∑
i,j

∫ ∫ψi(r1)ψj(r1)g(|r1 - r2|) ×

ψi(r2)ψj(r2)d
3r1d

3r2 (1)

Ex
PBC ) - 1

2Nk
∑
i,j

∑
k,k'

∫ ∫ψi
k(r1)ψj

k'(r1)g(|r1 - r2|) ×

ψi
k(r2)ψj

k'(r2)d
3r1d

3r2 (2)

gTC(r12) ) { 1
r12

, r12 e Rc

0, r12 > Rc

(3)

Nk ≈ 4π
3

Rc
3 1
V

(4)

Ex
Γ ) -1

2 ∑
i,j

∫ ∫ψi
0(r1)ψj

0(r1)gTC(|r1 - r2|) ×

ψi
0(r2)ψj

0(r2)d
3r1d

3r2 (5)
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or strongly distorted triclinic unit cells, this estimate can be
significantly different from eq 4.

The expression for the Hartree-Fock energy at the Γ-point
(eq 5) can be computed per unit cell and in an atom-centered
basis set as

with a, b, and c denoting translations of the unit cell. This
exact result can be obtained easily by introducing in eq 5
the expression of the periodic wave function in an atomic
orbital basis:

Here, Cµi are the wave function coefficients, which are
complex in the general case but can be taken real at the
Γ-point. φµ

a(r) is the atom-centered basis sets, translated by
a multiple of the unit cell given by a. The density matrix
elements Pµν are obtained from ∑iCµiCνi. The two-electron
four center integrals are defined as

These integrals can be obtained analytically for the TC
operator, and their numerical treatment will be discussed in
detail in Section 2.3. The triple sum over the lattice vectors
in eq 6 converges quickly in a and c because the overlap of
the corresponding Gaussian basis functions decays quickly
with distance, while the sum over b is finite by virtue of the
short-range nature of the truncated Coulomb operator. In eq
6, all terms that are larger than a given screening threshold
εscreening should be retained. As discussed in more detail in
section 4.3, screening based on the traditional Schwarz-
inequality combined with a simple distance criterium based
on the centers of the product densities µνa and λbσb+c can
be used to eliminate negligible terms.

At this point, some differences and similarities between
the approach summarized by eq 6, and the MIC, proposed
in ref 17 shall be discussed. First, there is the difference in
operator g(r), which is the conventional 1/r in the MIC and
TC operator (eq 3) here. Second, in the MIC, one retains
only one term from the sum over b, i.e., that particular index
b′, which guarantees that the distance between the centers
of the product densities µνa and λb′σb′+c is as small as
possible. This is usually the dominant contribution to the
sum but generally ignores terms larger than a given εscreening.
With increasing basis set size and quality, this leads to a
spurious minimum in the MIC HFX energy functional. This
instability is illustrated in Table 1 and analyzed in some more
detail in the Section 4.2. Note that for potentials with shorter
range, such as erfc(ωr)/r, the instability is less pronounced.
The new method based on the TC operator and the full sum
is stable for all basis sets employed, as shown in Table 2.
The total energy converges rapidly with Rc reaching, for this
simple system, a plateau at Rc ≈ 4 Å. As expected, for Rc

larger than the value suggested by eq 4, 7.7 Å for this system,

Γ-point sampling is not sufficient anymore, and the integral
diverges. Also the more conservative choice (Rc ) L/2 for cubic
cells) gives good results. Comparing Tables 1 and 2, it can be
seen that the MIC results equal the results of the truncated
method with Rc ) L/2 to micro-Hartree accuracy, in the case
where the MIC procedure is stable, i.e. the SZV, DZVP, and
TZVP basis sets. Even though the instability of the MIC
procedure is fundamental, this approach is, by construction, able
to eliminate the spurious self-exchange with image electrons,
even if the conventional Coulomb operator is used. Further
validation and testing of the truncated Coulomb potential
method based on eq 6 is presented in Section 3.

2.2. A long-range correction to the truncated
Coulomb operator. In the limit Rcf∞, the truncated and
full Coulomb potential become identical. In the context of
hybrid density functionals, the question arises whether the
missing long-range exchange at finite Rc can be corrected
by the long-range part of a local density functional. In a
similar fashion, this has been done for the HSE067,8 hybrid
functional that uses the short-range erfc(ωr)/r potential. The
basic concept behind this range separation relies on the fact
that the exchange energy can be written in terms of the
spherically averaged exchange hole Fxc

SA(r, s):

where u denotes the electron-electron interaction distance.
The long-range part for a system that interacts via a truncated
Coulomb potential is then simply given by

Within this range-separation ansatz, the exchange energy
can be written as

For convenience, a model with an analytical expression
of the spherically averaged exchange hole has been chosen.
Similar to the range-separated hybrid functional of Heyd et
al., the starting point for the long-range correction is the
exchange hole formulation of the PBE functional by Ern-
zerhof and Perdew.28

Ex
Γ ) -1

2 ∑
λσµν

PµσPνλ ∑
abc

(µνa|λbσb+c)gTC
(6)

ψi(r) ) ∑
µa

Cµi�µ
a(r) (7)

(µνa|λbσb+c)gTC
)

∫ ∫ µ(r1)ν
a(r1)gTC(r12)λ

b(r2)σ
b+c(r2)dr1dr2 (8)

Table 1. PBC Hartree-Fock Total Energies [Hartree]
Computed with the Minimum Image Convention for Two
Operatorsa,b

total energy [au]

basis set 1/r erfc(ωr)/r

SZV -33.531805 -32.552246
DZVP -33.781652 -32.801068
TZVP -33.798435 -32.817981
TZV2P -83.287255 -33.827285
QZV2P -219.806121 -41.438744

a The conventional 1/r Coulomb potential and the short-range
potential erfc(ωr)/r with ω ) 0.11. b The system consists of two water
molecules, described with pseudo potentials, in a cubic unit cell with
L ) 12.42 Å and with a geometry that appears sensitive to the
instability. It can be observed that the total energy converges to an
unphysical result as soon as the basis set quality reaches TZV2P.

Ex
DFT[F] ) 1

2 ∫ F(r)dr∫0

∞
4πuFxc

SA(r, u)du (9)

Ex
DFT,LRC[F] ) 1

2 ∫ F(r)dr∫Rc

∞
4πuFx

SA(r, u)du (10)

Ex ) Ex
HF,TC + Ex

DFT,LRC (11)
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The PBE exchange energy is defined via an integral over
the exchange energy density εx

PBE:

εx
PBE is a function of the electron density F(r) and its gradient

∇F(r) and is defined as the product of the LDA exchange
energy density and the enhancement factor Fx

PBE that ad-
ditionally depends on the gradient of the electronic density:

The PBE exchange hole model Jx
PBE enters into the

definition of the enhancement factor, defining the latter to
be an integral of the following kind:

with s ) |∇F|/2πkFF the reduced gradient, kF being the local
Fermi vector, and y ) kFu the scaled interaction coordinate.
For the analytic expression of Jx

PBE, the following param-
etrized form:

with parameters A-E being constants and F-H being
functions of the reduced gradient, has been found by
Ernzerhof et al. (see ref 28 for details). For the current
purpose, the long-range enhancement factor is given by

with Rc′ ) RckF. This integration can be carried out analyti-
cally (see Section A) yielding an expression for the long-
range correction of the exchange energy.

The final form of the range-separated exchange energy
reads now:

both parts depending on the cutoff radius, Rc. Using these
results, one can define three different hybrid functionals:

PBE0 is, for a ) 0.25, the standard PBE hybrid
functional.29-31 PBE0-TC denotes the original functional of
PBE0 in which the standard HFX energy is replaced by the
TC expression with cutoff radius Rc, and PBE0-TC-LRC is
the PBE0-TC functional with the long-range correction
(LRC) based on the PBE exchange hole. Of course, similar
variants can be defined for other hybrid functionals. It is
demonstrated in Section 3.2 that the use of a LRC allows
for a very small Rc (≈ 2 Å) without negatively impacting
the performance of the functional for typical thermochemical
quantities. HFX with such a short-range can be evaluated
very efficiently. Note that, in the limit of Rc going to zero,
the PBE functional is recovered but based in part on the
spherically averaged PBE exchange hole.

2.3. Efficient Calculation of Two-Electron Integrals
for General g(r). Two-electron four center integrals are
commonly calculated analytically using recurrences.32-34

CP2K employs the LIBINT56 library for this. These algo-
rithms start from the lowest angular momentum interaction,
i.e., (ss|ss)g, for a given interaction potential g(r12) and then
recursively calculate higher order contributions from that.
In order to calculate integrals with a total angular momentum
n, these routines have to be provided with n + 1 initial values
as the starting vector. With the notation used by Ahlrichs,34

this reads as

Table 2. PBC Hartree-Fock Total Energies [Hartree] with the Scheme for the Truncated Coulomb Operator For Various
Choices of Rc [Å]a

cutoff radius, Rc SZV DZVP TZVP TZV2P QZV2P

0.5 -30.074404 -30.273802 -30.298149 -30.309740 -30.330732
1.0 -32.693538 -33.024934 -33.052548 -33.061415 -33.064684
2.0 -33.459119 -33.722827 -33.738480 -33.747451 -33.750486
3.0 -33.527563 -33.778845 -33.794977 -33.803751 -33.807027
4.0 -33.531707 -33.781608 -33.798342 -33.807131 -33.810757
5.0 -33.531804 -33.781651 -33.798433 -33.807222 -33.810894
6.0 -33.531805 -33.781652 -33.798435 -33.807224 -33.810898
7.0 -33.531805 -33.781652 -33.798435 -33.807224 -33.810898
8.0 -33.531806 -33.781652 -33.798436 -33.807225 -33.810900

10.0 -33.533982 -33.783206 -33.800223 -33.809006 -33.812843
12.0 -33.912427 -34.152952 -34.170470 -34.179272 -34.183189
16.0 -33.533982 -35.851041 -35.869063 -35.877848 -35.882304

a The system is the same as the one described in Table 1, but the results are stable, independent of the basis set. For large values of
Rc, the Γ-point sampling of the exchange energy is not sufficient. As discussed in the text, the choice of Rc ≈ L/2 ≈ 6.0 Å (shown in bold)
guarantees that no spurious self-exchange parts enter the Γ-point calculation.

Ex
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PBE(F, ∇F)dr (12)

εx
PBE(F, ∇F) ) εx
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∞
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PBE0: Exc
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where T and F are parameters determined by the geometry
and the involved Gaussian basis functions. For several
commonly used operators, there exist efficient recursive
formulas to calculate the higher order derivatives. In the case
of the full range Coulomb potential, the whole procedure
reduces to an evaluation of the Γ-function at various
parameters T. For the TC potential one arrives at

which depends on the parameter T and the cutoff radius R′c
) Rc�F. Unfortunately, there is no obvious recurrence to
compute higher order derivatives, but (lengthy) explicit
formulas are readily derived. Nevertheless, since the explicit
dependence on F is trivial, it is sufficient to be able to
evaluate the bivariate function (R′c and T) and its derivatives,
with respect to T to be able to evaluate the required four
center integrals. An example of a higher order derivative is
shown in Figure 1. Here, a largely automatic approach is
presented that yields an accurate and efficient procedure to
evaluate representations of these bivariate functions. This
approach can be used with general operators g(r) even if no
explicit recurrences are known or if the numerical evaluation
is troublesome. For example, the procedure has also been
tested on the Yukawa potential for which Ten-no22 skillfully
derived a sequence of suitable expressions. Therefore, this
technique might be useful for investigating density func-
tionals that are based on a more flexible form of g(r).

In a first step, computer code for the explicit calculation
of the function and the required derivatives is generated by
a computer algebra system. This can be either an explicit
expression, as obtained for the TC operator, a symbolic
Taylor series,34 or any other convenient representation.
Neither efficiency nor stability of the generated expression
are a particular concern at this point. On a potentially large
set of reference points, to be discussed below, this code is
evaluated with arbitrary precision using a multi-precision
floating point library (mpfr).35,36 By doubling the number
of digits employed in this evaluation until the result is

accurate, a good numerical quality of the reference data is
guaranteed. In order to evaluate accurately the higher
derivatives of the TC operator, hundreds of digits are
essential for the intermediate expressions. Finally, an auto-
matic piece-wise bivariate interpolation of these reference
points, using Chebyshev polynomials, is performed. This
bivariate interpolation is constructed using the algorithm of
Caliari et al.37 In this scheme, the full two-dimensional
parameter space has to be mapped first on the square
[-1, 1]2, which is the natural domain for the interpolation.
The function must also be defined on the boundary of the
domain. In this square, the Padua2D points of order n are a
special set of optimal nodes used for the polynomial
interpolation:

with the generating curve:

The usage of these points guarantees an almost optimal
convergence with increasing degree of the Chebyshev basis
functions. The polynomial interpolation of a two-dimensional
function f(x1, x2) is then given by

where the coefficients:

with weights w	 and Chebyshev polynomials T̂m of order m
can be computed once and for all and, thus, be stored in a
table. Using the multi-precision enabled code, these coef-
ficients are computed and stored in a standard 64-bit floating
point representation. Function values of a bivariate function
are then evaluated based on eq 26 and, thanks to the favorable
properties of the Chebyshev expansion, will be accurate to
nearly machine precision, provided the expansion is of
sufficient order. This also holds for the Gn functions required
for the TC operator.

However, since the target function typically shows dif-
ferent behavior in terms of smoothness and continuity at
different argument ranges, it is not beneficial to perform a
global interpolation, as this requires a high order and, thus,
expensive interpolation. Instead, an adaptive scheme has been
devised that, given a specified low order of the expansion,
automatically bisects the full domain (e.g., using alternate
directions) until the accuracy of the interpolation is accurate
to a given threshold (e.g., 10-12 or machine precision). This
procedure is facilitated by the fact that the Padua2D
interpolation procedure provides an automatic estimate of
the accuracy.37 As the procedure bisects the domain,
computer code is generated such that the proper interpolation

G0(F, T) ) 2π

F3/2√T
∫0

∞
g( y

√F)ye-y2-Tsinh(2y√T)dy

(22)

G0(F, T, Rc′) )

π3/2

2F
2erf(√T) + erf(Rc′ - √T) - erf(Rc′ + √T)

√T
(23)

Figure 1. The figure shows G14(R′c, T) as defined by eqs 21
and 23 for the TC operator.

	 ) (	1, 	2) ) {γ( kπ
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2
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coefficients can be found efficiently in a table of patch-wise
interpolating functions. In this way, evaluations of the
interpolation can be performed orders of magnitude more
efficiently than with the global interpolation. For the case
of the TC operator, an interpolation order of 13 has been
employed. The down-side is, of course, that the interpolation
is only piece-wise contiguous but nevertheless accurate to
the chosen threshold everywhere. Note, that the interpolation
is constructed for all derivatives simultaneously, i.e. eq 26,
is never explicitely derived. In terms of efficiency, it can be
concluded that calculating the starting vector Gn for the
truncated potential is approximately twice as expensive as
computing with an optimized implementation of the Γ-func-
tion, the starting vector for the full Coulomb potential. The
code for evaluating Gn for the truncated potential is available,
as is the code for constructing the adaptive interpolation.38

3. Assessment and Validation of the Method

3.1. Illustration on Gas- and Condensed-Phase
Systems. In this section, the convergence behavior of the
truncated operator for increasing cutoff radius Rc is inves-
tigated. As model systems, chains of poly-ethylene and poly-
acetylene with a length of about 38 Å (30 carbon atoms)
have been chosen. For both systems, self-consistent total
energies have been calculated with the Hartree-Fock/pc-239-41

level of theory applying the standard Coulomb operator,
which serves as a reference, and with the truncated operator
for different cutoff radii in the range of 0.1-15 Å. In order
to illustrate the effect of the long-range correction, the same
calculations have been performed again, including the
correction based on the PBE exchange hole. In addition,
similar data for a two-dimensional hexagonal boron-nitride
mesh in periodic boundary conditions are presented. The
latter system consists of 128 atoms in total, has a dimension
of 20.1 × 17.4 Å and was computed with a pc-1 basis
set.39-41 The reference value has been obtained from an
exponential extrapolation of the last three data points.

All findings are summarized in Figure 2. In the case of
the uncorrected TC operator, one observes that the total
energy of all three systems decreases monotonically to the
limiting value for increasing cutoff radius Rc. Furthermore,
the logarithmic plot shows that all calculations converge
approximately exponentially to the correct value. The faster
convergence for poly-ethylene relative to poly-acetylene can
directly be attributed to its larger band gap. The computed
HF band gaps are 13.67, 7.34, and 13.95 eV for poly-
ethylene, poly-acetylene, and the hexagonal boron-nitride
mesh, respectively. The long-range correction improves upon
the uncorrected total energies in the short-range (0-2.5 Å)
but overestimates the correction to the total energy in the
long-range part. It is not so surprising that the LRC does
not capture the tail of the exchange hole very well, since
the underlying model is essentially derived to capture the
short-range behavior of the exchange hole. It appears that
this model does not decay sufficiently fast. Very accurate
Hartree-Fock energies are, thus, obtained more easily
without correction.

This analysis suggests that HFX calculations with a TC
potential could serve as an interesting tool for investigating
the behavior of the exchange hole at different ranges and
could support the development of new density-based ex-
change hole models.

3.2. Barrier Heights and Reaction Energies for
Gas-Phase Reactions. In order to analyze the accuracy of
calculations based on the TC potential, the method has been
benchmarked against a database established by Truhlar et
al.42 This database consists of 22 reactions involving 47
molecules in gas phase and provides geometries of reactants,
products, and saddle points. This database has been selected
because reaction energies are particularly sensitive to the
precise treatment of exchange and because saddle point
geometries usually involve somewhat delocalized electronic
states. The dependence of the reaction energies and the
barrier heights on the choice of Rc for both the PBE0-TC
and PBE0-TC-LRC functionals has been investigated. In
order to provide a reference, a comparison of these results
to the established PBE,5 PBE0,29-31 HSE06,7,8 and MCY321

functionals are presented. In addition, all benchmark runs
have been performed twice, once with an all-electron
representation and once applying pseudo-potentials. All-
electron calculations employ the Gaussian and augmented
plane waves (GAPW) method43 and the MG3S basis,44 while
pseudo-potential calculations use the Gaussian and plane-
waves (GPW) method,45 PBE optimized pseudo-potentials,46

and molecularly optimized TZV2P basis sets.47 All results
are summarized in Table 3. The first observation is that, as
expected, the results of the standard PBE0 calculations are
recovered as Rcf∞. Based on these results, the replacement
of the standard HFX expression with its truncated counterpart
seems to be possible without loss of accuracy, if Rc > 6.0 Å.
As emphasized before, this is system dependent but appears

Figure 2. Shown are absolute errors in total energies with
respect to the limiting case Rcf∞. Results for nonperiodic
poly-ethylene and poly-acetylene are drawn in red and black,
respectively, while results for periodic hexagonal boron-nitride
are displayed in green. Solid and dotted lines represent data
obtained without and with the long-range correction. All errors
are scaled by the number of non-hydrogen atoms in each
system. As shown in the inset for poly-acetylene, the correc-
tion over and under estimates the total energy at different
ranges, which is the cause of the spikes in the logarithmic
plot.
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to hold for the (small) molecules in this test set. Interestingly,
already for Rc ) 4.0 Å, results obtained with either PBE0-
TC and PBE0-TC-LRC are basically converged. If some
small influence on the final results can be tolerated, a choice
of Rc ) 4.0-6.0 Å appears appropriate, which can bring
noticeable savings in computer time for large systems. PBE0-
TC and PBE0-TC-LRC appear only significantly different
at short-range Rc e 2.5 Å.

For the very short-range calculations (Rc ) 0.5 Å), where
only the PBE0-TC-LRC functional is meaningful, the
calculations yield, as expected, approximately PBE results.
It can be observed that in the intermediate range, around Rc

) 2.0, the best estimates are obtained for the reaction
barriers, similar in quality to MCY3. This suggests that the
use of very short-range exchange functionals, such as PBE0-
TC-LRC at Rc ) 2.0 Å is meaningful, and that even more
accurate functionals that explicitly limit the action of exact
exchange to such a short distance can be developed.

3.3. Parallel Performance. Given the computational cost
of simulations including exact exchange, an efficient and
scalable implementation is essential if exact exchange is to
be a successful ingredient for simulations of large and
complex systems. The initial implementation presented in
ref 13 scaled to a few hundreds of cores for a condensed
phase system containing 64 water molecules, described with
a TZV2P basis for both oxygen and hydrogen (2560 basis
functions). Combined with an in-core compression scheme
and a multiple-time step approach, this was sufficient to
compute 13 ps of MD trajectory. As shown in Figure 3, the
new implementation, using the PBE0-TC-LRC(Rc ) 2.0)
functional, allows the same system to scale up to a few

thousands of cores, effectively allowing simulations to
proceed 10 times faster. Currently, 10 ps of simulation can
be obtained in two days, even without a multiple-time step
scheme. As will be illustrated in Section 3.4, for systems
that are computationally more demanding than 64 water
molecules, scalability to 10′000s of cores can be reached
effectively enabling CP2K19 to obtain good performance on
the largest supercomputers currently available.

The basic parallelization strategy has remained unchanged
from the initial implementation, i.e., replicated density, and
Kohn-Sham matrices are made available on all MPI
processes. Based on a load-balancing step, the work of each
process is decided in advance, and computation proceeds in
a communication-free way until all local contributions to the
Kohn-Sham matrix have been computed and until the matrix
can be redistributed and summed. One key advantage of this
approach is that full integral symmetry can be exploited.
Furthermore, there are only communication steps in the
beginning and end, and these can be performed efficiently
in a ring topology. The disadvantage of this approach is that
neither the communication nor the memory decreases as the
number of processes increases. The memory bottleneck limits
the size of the systems that can be studied, while the
communication bottleneck ultimately limits scalability, pro-
vided the load balance can be maintained throughout.
However, the current implementation reduces the impact of
the matrix replication by employing a mixed MPI/openMP
scheme, where density and Kohn-Sham matrix are shared
between the threads (one per core) on a node. In this way,
the communication needed for the replication is reduced, and,
depending on the available RAM, much larger systems (3
× 104 basis functions and more for 16 Gb/node) can fit in
memory. A further benefit of the MPI/openMP scheme is
that load balancing between threads can easily be performed.
Such a dynamic load balancing is helpful for inhomogeneous
systems that are difficult to load balance before the calcula-
tions start. Nevertheless, the importance of a good initial

Table 3. The Table Shows Mean-Square Errors in
kcal/mol of Classical Barrier Heights and Classical
Reaction Energies with Respect to Experimental Valuesa

GAPW GPW

barriers energies barriers energies

PBE 9.9 3.3 9.1 2.3
PBE0 4.6 1.7 4.3 2.0
HSE06 4.6 1.7 4.4 2.1
MCY3 2.9 1.7 3.0 1.3

Rc [Å] TC TC-LRC TC TC-LRC TC TC-LRC TC TC-LRC

∞ 4.6 4.6 1.7 1.7 4.3 4.3 2.0 2.0
8.0 4.6 4.6 1.7 1.7 4.3 4.3 2.0 2.0
6.0 4.6 4.6 1.7 1.7 4.3 4.3 2.0 2.0
4.0 4.4 4.5 1.7 1.7 4.2 4.2 2.0 2.0
3.5 4.2 4.2 1.7 1.7 4.0 4.0 2.0 2.0
3.0 3.8 3.8 1.7 1.7 3.5 3.6 2.0 2.0
2.5 3.2 3.2 1.5 1.6 3.0 3.0 1.9 1.9
2.0 2.7 2.6 1.4 1.4 2.5 2.5 2.0 1.9
1.5 3.4 3.3 1.5 1.5 3.1 3.1 2.1 2.1
1.0 5.0 5.0 3.1 2.0 4.5 4.7 2.5 2.0
0.5 7.6 8.8 2.6 2.1 7.4 8.5 2.3 2.7

a The data is shown for standard functionals PBE, PBE0,
HSE06, and MCY3 and for the TC PBE0-TC and long-range
corrected PBE0-TC-LRC functionals. For the latter two functionals,
truncation radii (Rc) ranging from 0.5 to 8.0 Å have been
employed. Calculations have been performed using an all-electron
approach (GAPW) with a MG3S basis and using pseudo-potentials
(GPW) with a molecularly optimized TZV2P basis. Relative to
experiment, the best results are obtained for Rc ) 2.0 Å, shown in
bold.

Figure 3. A comparison of the scaling of the current (squares)
and previous (circles, ref 13) implementation of periodic HFX.
The benchmark is 10 steps of ab initio molecular dynamics
of 64 water molecules in PBC using a TZV2P basis and
pseudo potentials. The solid lines represent the time spent in
the HFX routines, and the dashed lines represent the total
run time. Using 2 048 cores, successive Born-Oppenheimer
MD steps take approximately 9 s. All timings were on a Cray
XT5 with 8 cores per node.
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distribution of work cannot be underestimated, and a
carefully constructed load-balancing algorithm is essential.
The full description of this part of the algorithm is beyond
the scope of the current paper. The basic ingredient is a
binning procedure that collects batches of four center
integrals of approximately equal estimated computational
cost. These bins, typically 64 per core, are the basic unit of
work and are distributed such that the computational load is
balanced.

3.4. The Cohesive Energy of LiH at Hartree-Fock
Basis Set Limit. Recent HF and post-HF results on crystal-
line LiH48-57 have received much interest in the solid-state
community. The availability of accurate reference numbers
has made this system a challenging benchmark to judge the
accuracy of various theoretical methods applied to condensed-
phase systems. This work contributes to this ongoing research
by computing the HF cohesive energy of LiH near the basis
set limit. These results have been published in part in ref
51, where a comparison of the total energy of the LiH crystal
obtained directly using the truncated method with results by
Scuseria and co-workers based on extrapolation of screened
exchange has been presented. Here, these results are sum-
marized, and more details of these calculations are presented.

In a first step, an optimized basis set for an accurate HF
calculation on bulk LiH, similar in composition to the
polarization consistent (pc-3) basis sets derived by Jensen,39-41

has been constructed. The composition of this basis set is
8s3p2d1f/6s3p2d1f and 13s6p2d1f/11s5p2d1f for hydrogen
and lithium (see ref 51 for details). The accuracy of the
optimized basis has been estimated to be within 0.001 au of
the basis set limit for the total energy, while the basis set
error on the cohesive energy is likely smaller than 0.1%.
All calculations, summarized in Table 4, have been per-
formed on the experimental cubic unit cell with linear
dimension L ) 4.084 Å, which contains 4 Li and 4 H atoms,
using truncated HF without the long-range correction. Total
energies have been computed for systems of increasing
system size by explicitely repeating this unit cell periodically
in three dimensions. The largest system employed, a 5 × 5
× 5 repetition, consists of exactly 1 000 atoms and uses
37 500 Gaussian basis functions. With increasing system size,
the range of the TC operator has been increased as well.
The results have been found to converge exponentially with
system size, and an accurate estimate for the total energy
per unit cell of approximately -32.258179 au could be
obtained directly from a calculation of the largest system.
This number is in excellent agreement with the Padé-
extrapolated SR-HFX results of ref 51 -32.258171 au. By
calculating the HF energy of the H and Li atoms in periodic
boundary conditions and retaining the basis functions of all

other (ghost) atoms in the unit cell, a consistent number for
the cohesive energy could be obtained. However, due to the
fact that unrestricted calculations are needed for the atoms,
these calculations are more demanding (memory-wise) than
the bulk and are, therefore, only performed for the 4 × 4 ×
4 repetition of the basis cell. The 4 × 4 × 4 crystal required
11 terabytes of memory for the integral storage. The best
estimate of the cohesive energy obtained in this way is
-131.949 mEh. This result is derived in an extrapolation-
free way and based on just three calculations (bulk LiH and
the atoms Li and H). It is in very good agreement with the
best estimate reported by Gillan et al.,48 -131.95 mEh. In
order to investigate quantitatively the convergence of the
energies with respect to Rc, systematic calculations of the
HFX energies for the 5 × 5 × 5 unit cell, using a smaller
basis set (adjusted pc-2 basis 4s2p1d/4s2p1d and 9s3p1d/
9s3p1d for H and Li, respectively, 19 000 basis functions in
total) have been performed. These results are presented in
Table 5 and show that the cohesive energy is obtained with
milli-Hartree accuracy for Rc ) 6 Å and micro-Hartree
accuracy for Rc ) 10 Å.

This system has also been used to measure the parallel
efficiency of the implementation. Using the 3 × 3 × 3
repetition of the basic unit cell, consisting of 216 atoms and
8 100 basis functions, calculations, taking advantage of the
hybrid MPI/openMP approach discussed above, have been
performed. The results for this setup, summarized in Figure
4, show that this approach scales beyond 32 768 cores. The
scaling is superlinear up to approximately 2 048 cores
because the increasing amount of memory (2Gb/core) is used
to store four center integrals, and successive SCF steps
benefit from the in-core storage. The total amount of storage
used for integrals exceeds 3 terabytes in this case. For the
runs on more than 16 384 cores, the impact of the com-

Table 4. Results Obtained with the Truncated Coulomb Operator and a Large and Flexible Basis for Unit Cells That Are a
Multiple of the Basic Cubic Unit Cell (4.084 Å)a

Rc [Å] E(HF)[au] H[au] Li[au] εHF
coh [au]

2 × 2 × 2 4.0 -32.244609 -0.499957 -7.428493 -0.132702
3 × 3 × 3 6.0 -32.256844 -0.499974 -7.432137 -0.132100
4 × 4 × 4 8.0 -32.258022 -0.499974 -7.432582 -0.131949
5 × 5 × 5 10.0 -32.258179 N/A N/A N/A

a The columns show the size of the unit cell, the range of the TC operator (Rc), the Hartree-Fock energy per unit cell, the H atom
energy, the Li atom energy, and the cohesive energy, respectively (εHF

coh).

Table 5. Hartree-Fock results Obtained with the
Truncated Coulomb Operator for Various Values of Rc

without Long-Range Correctiona

Rc [Å] E(HF)[au] H[au] Li[au] εHF
coh [au]

3 -32.231006 -0.498769 -7.405766 -0.153216
4 -32.242905 -0.499298 -7.423518 -0.137911
5 -32.246980 -0.499325 -7.429613 -0.132807
6 -32.247893 -0.499326 -7.431395 -0.131252
7 -32.248177 -0.499326 -7.431845 -0.130873
8 -32.248275 -0.499326 -7.431944 -0.130798
9 -32.248308 -0.499326 -7.431964 -0.130787

10 -32.248321 -0.499326 -7.431967 -0.130787

a The 5 × 5×5 repetition of the basic cubic unit cell (4.084 Å)
has been employed, together with a smaller basis set. The
columns show the range of the TC operator (Rc), the
Hartree-Fock energy per unit cell, the H atom energy, the Li atom
energy, and the cohesive energy, respectively (εHF

coh).
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munication becomes significant and ultimately limits scal-
ability. For this system, the load balance remains excellent
and the local construction of the Fock matrix itself scales
perfectly even at 65 536 cores.

3.5. The Electronic Structure of Rubredoxin. In order
to demonstrate the ability of the TC method to compute large,
inhomogeneous condensed phase systems with high quality
basis sets, the electronic structure of a fully solvated
iron-sulfur protein, rubredoxin, in periodic boundary condi-
tions with a polarized triple-� valence basis set52 for all
atoms, including hydrogen, has been computed. In this setup,
the system is described with 31 247 basis functions, contain-
ing 2 825 atoms, and the unit cell has edges 31.136 × 28.095
× 30.502 Å3. Due to the iron-sulfur active site, the
multiplicity of the system is 6. The same system has been
employed in earlier work with semilocal functionals to
demonstrate the ability to compute ab initio free energy
differences53 and total energies near the basis set limit47 for
systems containing nearly 3 000 atoms. A single-point wave
function optimization takes less than two hours, with about
two-thirds of the time spent in the HFX routines using 8 196
cores of a CRAY XT5. The storage needed for the integrals
is approximately 2.5 terabytes, using a threshold of 10 -8

for Schwarz screening and an in-core compression scheme
described in ref 13. With this calculation, the difference in
spin density distribution for the active site between a hybrid
functional (B3LYP2,4,54,55) with the TC operator (Rc ) 6.0
Å) and a semilocal functional (BLYP3,4) has been investi-
gated. The result of the calculation is illustrated in Figure 5
where the difference in spin density between the GGA and
the hybrid calculation is shown. Not unexpectedly, a more
localized spin density is found with the hybrid functionals.

4. Conclusions

A new approach for Hartree-Fock calculations at the Γ-point
using Gaussian basis functions has been presented. This
approach is based on the TC operator and is demonstrated
to be robust. With increasing truncation radius, results

converge exponentially to the limiting Hartree-Fock values.
Furthermore, a density functional based long-range correction
to the TC operator has been derived. With this correction, a
very short-range exchange (Rc ) 2.0 Å) yields excellent
results for reaction energies and for barrier heights. The finite
range of the operator allows for efficient screening and can
be exploited in a linear-scaling implementation of exchange.
The current implementation is massively parallel and allows
for calculations on systems containing thousands of atoms
and ten thousands of basis functions. These developments
will enable simulations based on hybrid functionals that probe
the rich chemistry and the physics of large and complex
condensed-phase systems.

5. Appendices

A. Long-Range Correction. In this section, analytical
expressions for the long-range part of the PBE exchange hole
enhancement factor are presented in closed form for any
given cutoff radius Rc. Indeed, based on Jx

PBE(s, y) as defined
by eq 15 (see ref 28 for details, including definition of the
quantities AsH), one finds that:

where:

with

and:

kF denoting the local Fermi vector. Ei(x) is the exponential
integral and defined as

Figure 4. Shown is the speedup obtained from a computation
of the 3 × 3 × 3 repetition of the basic unit cell of LiH (8 100
basis functions). Black and red curves depict the observed
speedups for the full calculation and for the Hartree-Fock
part, respectively. Dotted lines correspond to theoretical
speedups, assuming either an infinite amount of memory per
node (blue) or the actually 16 Gb/node (green). All calculations
have been performed using 8 threads per MPI process on a
8 core node (CRAY XT5).

Fx
PBE,LRC(s) ) -8

9 ∫Rc′
∞

yJx
PBE(s, y)dy )

-8
9

(I1 - I2 + I3 + I4) (28)

I1 ) -A
2

exp(9
4

s2H
A )Ei(-9

4
s2H
A

- s2HRc
′2) (29)

I2 ) -A
2

Ei(-s2HRc
′2) (30)

I3 ) -A
2

Ei(-(D + s2H)Rc
′2) (31)

I4 ) R(R0 + R2Rc
′2 + R4Rc

′4) exp(-Rc
′2(D + Hs2)

(32)

R ) 1
2

1

(D + s2H)3
(33)

R0 ) 2E + DC + D2B + s2(HC + 2DHB + 2EG +

DCF) + s4(H2B + HCF) (34)

R2 ) D2C + 2DE + s2(2EH + 2DEG + 2DHC +

D2CF) + s4(2EGH + 2DHCF + CH2) + s6CFH2 (35)

R4 ) D2E + s2(D2EG + 2DHE) + s4(2DHEG +

EH2) + s6EGH2 (36)

Rc′ ) RckF (37)
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B. Stability Criterion. In this section, the effect of
thresholding and the MIC on the stability of the SCF is
analyzed. Starting from the exchange energy for a system
containing N basis functions:

which can be rewritten in terms of matrixsvector products
as the quadratic form

where vexact is a N2 × N2 matrix containing all four center
integrals, and P is a vector of size N2 with the density matrix
elements. If screening is applied to the four center integrals
using a given threshold ε, the above equation can be written
as

where vscreened collects all integrals that pass the screening,
i.e., contributions that are larger than the threshold, and vε

is a matrix of error terms of order O(ε) that are ignored
throughout the calculation. For a reliable and stable optimi-
zation procedure, the maximum error introduced by ignoring
PTvεP should be small.

In order to get an estimate for the maximum magnitude
of the error, it is sufficient to obtain an estimate of the
maximum eigenvalue of the P matrix because

The above formula can be derived under the assumption
that the largest eigenvalue of vε is O(ε). In the worst case,
this eigenvalue could be N2ε but is usually smaller (∼Nε).

Since CTSC ) 1 with C being the matrix of the molecular
orbitals, and S the overlap matrix of the basis functions, the
following upper bound for the norm of C can be obtained

Writing the density matrix P in terms of molecular orbitals,
P ) CCT, one finds that:

Finally, the above expression can be related to the
condition number of the overlap matrix:

where the largest eigenvalue of S is assumed to be of order
one. Based on these estimates, one can conclude that the
SCF calculations will be stable as long as

This stability estimate is usually too conservative but it
does represent a worst-case scenario. On the other hand, as
long as the SCF is stable, it is usually observed that λmax(P)
≈ O(1), which confirms that the error due to screening is
typically ε per electron.

Finally, an analysis of the instability observed with the
MIC algorithm is presented. Essentially, the MIC can be
interpreted as a calculation with a TC potential using Rc )
L/2 but with two sources of error in the computed four center
integrals. The first source of error is due to the fact that only
one term in the sum over b is retained, while the second
source of error is due to the fact that these integrals are
computed with the 1/r operator. These errors add an
additional term vMIC to the expression:

which can not be controlled by the threshold ε. As before,
the error related to PTvMICP might grow quickly as the
condition number of the basis set becomes worse, explaining

Figure 5. The left panel shows the unit cell of the solvated protein rubredoxin, while the right panel focuses on its iron-sulfur
active site. The contour shows the difference in spin density distribution between calculations performed with BLYP and B3LYP
with the TC operator. Red indicates an excess in spin density with the local functional, while green indicates an excess with the
hybrid functional. Clearly, the use of a hybrid functional favors localization of the spin density.
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the stability of the algorithm with small and well-conditioned
basis sets and the instability with large and flexible basis
sets.

C. Efficient Near- and Far-Field Screening. Determin-
ing in advance which four center integrals are smaller than
a given threshold and can, thus, be ignored in the calculation
is important in an implementation of HFX that targets large
systems. Indeed, screening reduces the number of integrals
that need to be computed from O(N4) to O(N). Two kinds
of screening are commonly employed for the four center
integrals, namely near- and far-field screening. Near-field
screening14 relies on the Schwarz-inequality and reduces the
number of terms to O(N2) also for calculations employing
the 1/r operator, far-field screening only becomes really
efficient15 for operators g(r) that decay faster than 1/r and
reduces the number of required four center integrals to O(N).
For systems with decaying density matrix (i.e., systems with
an electronic gap), combining near-field screening with
screening on the density matrix elements16 also reduces the
effort to O(N). A brute-force implementation of the screen-
ing, as implemented in CP2K,19 is O(N2). It is, therefore,
important to reduce the prefactor of this term as much as
possible and to have an efficient screening algorithm. An
approach which is sufficiently efficient to deal with systems
containing thousands of atoms without significant screening
overhead is presented below.

For the near-field screening one can rely on the Cauchy-
Schwarz inequality,

which only requires two center integrals. However, instead
of storing or computing these two center integrals, it is very
efficient to instead parametrize screening functions that are
an upper bound to these integrals. These screening functions
only depend parametrically on the interatomic distance Rµν

but are different for each type of Gaussian basis function
(atom kind, shell, sets). These fits can be easily performed
once one observes (see Figure 6) that the logarithm of the
integral is similar to a quadratic function at larger distance:

This choice leads to the useful properties that the estimate
decays monotonically with increasing distance and that the
expression only requires the square distance between the
centers. The coefficients a0 and a2 are calculated once and
for all at the beginning of a calculation, minimizing an
asymmetric penalty function:

over a grid of suitably chosen values Rµν
i , with ∆i )

log((µν|µν)(Rµν)) - (a2Rµν
2 + a0), and k(∆i) ) 1, if ∆i < 0

and k(∆i) ) 1 × 104 otherwise. This choice of k guarantees
that a2Rµν

2 + a0 will be approximately an upper bound and
not merely a least-squares fit. Clearly, once the coefficients
are determined, obtaining a Schwarz estimate of the integral
is particularly fast.

The far-field screening is currently based on a rather crude
estimate, which only flags if the integral will be smaller than
a given threshold. For the TC operator this estimate can be
obtained easily. It is based on the radii of the product
densities of Rµν

F for µνa and Rλσ
F for λbσb+c and cycles as

soon as Rµν
F + Rλσ

F + Rc < |P - Q|, where P and Q are the
centers of the product densities. The radii Rµν

F and Rλσ
F are

similarly obtained from a two-parameter fit to precomputed
values.
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Biomedicina (IBUB), Facultat de Farmàcia, UniVersitat de Barcelona, AVgda.

Diagonal 643, Barcelona 08028, Spain

Received August 10, 2009

Abstract: A complete derivation of polarizable intermolecular potentials based on high-level,
gas-phase quantum-mechanical calculations is proposed. The importance of appreciable
accuracy together with inherent simplicity represents a significant endeavor when enhancement
of existing force fields for biological systems is sought. Toward this end, symmetry-adapted
perturbation theory can provide an expansion of the total interaction energy into physically
meaningful, for example, electrostatic, induction and van der Waals terms. Each contribution
can be readily compared with its counterpart in classical force fields. Since the complexity of
the different intermolecular terms cannot be fully embraced using a minimalist description, it is
necessary to resort to polyvalent expressions capable of encapsulating overlooked contributions
from the quantum-mechanical expansion. This choice results in consistent force field components
that reflect the underlying physical principles of the phenomena. This simplified potential energy
function is detailed, and definitive guidelines are drawn. As a proof of concept, the methodology
is illustrated through a series of test cases that include the interaction of water and benzene
with halide and metal ions. In each case considered, the total energy is reproduced accurately
over a range of biologically relevant distances.

1. Introduction
The development of increasingly scalable software and
greater access to massively parallel computer architectures
allow longer numerical simulations to be performed on
continuously more complex molecular assemblies. This, in
turn, has brought the investigation of biologically relevant
systems over realistic time scales within reach, for example,

atomistic simulations of a membrane for hundred of micro-
seconds1 or folding of small proteins.2 In the latter examples,
the use of a pairwise additive force field, for example,
Amber,3 Charmm,4 Gromos,5 or Opls-AA,6 provides in
general a reasonable reproduction of experimental data as
long as polarization effects are not dominant.

When, on the contrary, induction effects can no longer be
neglected, or vary significantly in the course of the simula-
tion, nonpolarizable potential energy functions rapidly attain
the inherent limits of their validity. Two recent studies7,8

endeavored to describe the folding of a small protein, the
human Pin1 WW domain, by means of the Charmm
macromolecular force field. Whereas this potential energy
function was able to preserve the �-sheet-like native structure
over the 200 ns time scale, it failed to fold within 10 µs the
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protein chain from an extended motif into the native
conformation. It was demonstrated that this failure is due to
force-field accuracy rather than insufficient samplingswhether
or not neglect of polarization phenomena is responsible for
protein misfolding remains at this stage a matter of debate,
which would require additional investigation to find a
definitive answer. Metalloproteins constitute another class
of biologically relevant systems where induction effects need
to be accounted for. In this case, a metal ion polarizes the
environment, which, in turn, alters the binding hierarchy9

of neighboring chelating agents. In particular,10,11 when using
a standard nonpolarizable potential energy function, the
stability of the active site is perturbed on account of the
exaggerated interaction of the ion with water, compared to
that with either the vicinal carbonyl or carboxylate groups.
Ion channels also represent important biological systems, in
which small ions permeate through narrow pores, strongly
polarizing the walls of the latter12 and modulate as a result
the ionic selectivity.13 The formation of crystals can also be
governed by polarization effects.14-17 When decomposing
the total interaction energy into electrostatic, induction, and
van der Waals contributions, the importance of the induction
energy suggests that it may play a predominant role in the
stability of the crystal and, hence, should not be ignored.

The need for taking into account polarization phenomena
explicitly in molecular-dynamics simulations constitutes an
ongoing effort that can be traced back to the 1980s.18 One
of the grand challenges for polarizable force fields is the
derivation of functions that are suitable for biological
simulations. Toward this end, a number of routes have been
explored to include polarization effects explicitly. A first
route is based on Drude oscillators,19 which describe
electronic induction by the movement of a fictitious mass
bonded to polarizable atoms by means of a stiff spring.
Another approach, referred to as fluctuating charges,20-23

consists of changing the charge of the atoms along the
simulation. These charges are adjusted according to the
principle of partial equalization of orbital electronegativi-
ties.24 A third path, namely, multipole expansions,21,25-30

uses distributed polarizabilities to model induction energies
following a self-consistent procedure to determine the
induced dipoles. These methods have been probed in a
variety of applications ranging from liquid simulations31-34

to simulations of DNA.35 They have been combined with
molecular-dynamics simulations of increasing complexity,
such as that of polarizable membranesssee for instance ref
36. In the latter reference, Drude oscillators model induction
effects and allow a better agreement to be reached between
simulation and experiment for the reproduction of the dipole
potential that arises at the water-lipid interface.

The main thrust of the present work is to build a
polarizable force field that reconciles simplicity and accuracy.
The chosen approach relies on the central idea37 of partition-
ing the interaction energy into physically meaningful con-
tributions and to determine the associated parameters using
quantum-mechanical (QM) methods. A logical roadmap is
followed for the construction of a consistent potential energy
function.9,38-43 This consistency imposes a de novo deriva-
tion of gas-phase atomic charges. The induction contribution

is then derived from ab initio calculations and modified by
ad hoc damping functions. Last, van der Waals parameters
are determined using an appropriate mathematical expression
that guarantees the faithful description of the overall
intermolecular interactions at play. Despite the precision of
such a description, a number of key elements are still missing
for a faithful reproduction of nonbonded interaction energies
between molecules over a wide range of distances. In the
reproduction of the total quantum-mechanical interaction
energy, the rudimentary description needed for large-scale
simulations of biological systems is bound to failure if high
accuracy is sought, as several terms, like nonmultipolar
contributions, are not described explicitly. Choices have,
therefore, to be made to obtain a model of sufficient accuracy,
while remaining concise. Appropriate functions ought to be
determined to include implicitly the missing contributions.
In this study, a complete set of definitive guidelines is
proposed to derive compact polarizable intermolecular
potentials. The approach is illustrated through a series of
test cases that include the interaction of water and benzene
with halide and metal ions.

2. Theoretical Underpinnings

The QM calculations reported here rely on symmetry-adapted
perturbation theory44,45 (SAPT), which provides a formal,
rigorous framework for the expansion of the total interaction
energy into meaningful contributions utilized as a reference.
In particular, use is made in this work of the SAPT2
expansion, henceforth called SAPT for simplicity, which
accounts for correlation effects at the second-order
Møller-Plesset46 (MP2) level of theory. Within SAPT, the
interaction energy is decomposed into the individual con-
tributions shown in eq 1. In the latter expression, the first
four terms stand for the electrostatic (Uele), induction (Uind),
exchange (Uexc), and dispersion (Udis) components. In addi-
tion, the SAPT expansion embraces two terms corresponding
to the coupling between exchange and induction (Uexc-ind)
and between exchange and dispersion (Uexc-dis). Finally, the
last term (δHF) accounts for a collection of higher-order
induction and exchange-induction terms. Altogether, the
contributions are written

The stated energy components cannot, when taken sepa-
rately, be studied in a straightforward fashion with a classical
decomposition.47 For a comparison on a one-to-one basis,
certain individual contributions need to be summed, as has
been done previously by several authors.9,48-51 It is then
possible to cast the description into three potential energy
functions, namely, for electrostatic, induction, and van der
Waals contributions.

The electrostatic component (∆U ele
SAPT) corresponds to the

first-order contribution to the electrostatic energy. The pure
induction term given by SAPT ought to be added to the
exchange-induction term, as well as to higher-order induc-
tion and exchange-induction terms to encompass the full
induction potential (∆U ind

SAPT). The last contribution, referred

∆U tot
SAPT ) Uele + Uind + Uexc + Udis + Uexc-ind +

Uexc-dis + δHF (1)
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to as the van der Waals potential (∆U vdW
SAPT), consists of the

sum of exchange and dispersion terms.

As was put forth previously, a molecular-mechanical
expansion can mimic the above-summed QM energies. This
includes an electrostatic potential that relies upon atomic
charges, an induction term associated with an appropriate
damping function, and an ad hoc van der Waals function.9

The first order contribution, of electrostatic nature, is
modeled by a set of atom-centered point charges and is a
rudimentary approach to describe the molecular electrostatic
potential. While this description is simple, it has proven52

to reproduce under most circumstances the target quantity
with an appreciable accuracy. Determination of atomic
charges is achieved53 by means of regular grids surrounding
the molecule of interest, over which the QM electrostatic
potential is mapped. Penetration effects, which represent an
important, short-range component of the electrostatic interac-
tion, are evidently absent from the classical, Coulomb
potential.54 The incompleteness of the model is rooted in
the computation of the molecular electrostatic potential
outside the sphere of convergence.55 To a large extent, these
effects stem from the overlap of electron densities of
interacting compounds, which cannot be accounted for by a
localized atomic description of the electrostatic potential.56

Ad hoc functions57-60 have been shown to mimic the
respective short-range interactions. Here, use will only be
made of an ansatz inferred from the formulation of Freitag
et al. by Cisneros et al.60 It holds the advantage of being
derived explicitly for atomic charges, and compared to other
functions, it offers a simpler expression and parametrization.
Charges are, therefore, modified as stated in eq 3 in ref 60.

As detailed above, different routes can be chosen for the
description of induction phenomena in the classical simula-
tions of biological systems. Here, polarization is modeled
by means of distributed polarizabilities61,62 over subsets of
atoms. Previous articles9,43,63 have demonstrated that the use
of charge-flow polarizabilities between chemically bonded
atoms supplemented by isotropic dipole polarizabilities on
heavy atoms is able to recover the anisotropy of the
molecular polarizability with both simplicity and effective-
ness. Polarizabilities were determined by means of a fitting
procedure41 that relies on three-dimensional maps of the
induction energy evaluated quantum-mechanically. As was
asserted previously,9,43,63 the classical expansion of polariza-
tion ought to be damped in order to reproduce the destabiliz-
ing effect of exchange-induction effects occurring at short
intermolecular distances. In the present work, the Jensen et
al.64 and the Tang and Toennies65,66 (TT) functions have
been chosen. In the former expression, the distances in the
interaction tensor are modified by a scalar parameter, a, that
appears in eq 16 in ref 64. In the latter expression, truncation
of the series is done at the sixth order, as suggested by Millot
and Stone,67 and subsequently rewritten at the third order,
as proposed by Meredith and Stone.68 The final expressions
for the induction energy utilized herein are

where Qt
a and ∆Qt

a are, respectively, the permanent moment
and the induced moment of rank t located at site a of
molecule A, Ttu

ab is the element of the electrostatic tensor for
the interaction of the multipole moments of ranks t and u,
found, respectively, at sites a and b, and f3(�; rab) is the
truncated Tang and Toennies damping function, in which �
is a scalar parameter. The term Rtt′

aa′ is the atomic polariz-
ability, which describes the change in the multipole moment
of rank t at site a resulting from the t′th derivative of the
potential created by all other moments at site a′. The above
expressions are also detailed in eqs 21 and 22 in ref 50.

The last term of the classical intermolecular potential is
the van der Waals contribution, which is modeled in the
present work by three alternate formulations depending on
the r distance. The first one is the standard 6-12 Lennard-
Jones (LJ) expression,69 namely, ∆U vdW

MM/LJ ) ε [(σ/r)12 -(σ/
r)6], where the parameters ε and σ correspond respectively
to the depth of the potential well and the distance at which
the interparticle potential is zero. The second one, used
among others in the Amoeba70 force field, is the Halgren71

potential, namely, ∆U vdW
MM/Halgren ) ε [1.07R*/(r + 0.07R*)]7

× [1.12R*7/(r7 + 0.12R*7) - 2], where R* is the minimum-
energy distance. The third one is the exp-6 Buckingham
function,72 namely, ∆U vdW

MM/Buckingham ) ε exp(-A1r) - (A2/
r)6, where A1 and A2 are shape parameters.

3. Computational Details

All molecular geometries were optimized using the Gauss-
ian03 suite of programs73 at the MP2(Full)/6-311++G(2d,2p)
level of approximation. Electronic properties were computed
at the MP2(Full)/Sadlej level of approximation, considering
that the Sadlej74-77 basis set provides a very good compro-
mise between the number of Gaussian contractions and
accuracy.78 All individual contributions to the interaction
energy were determined with the SAPT2008 program of
Jeziorski et al.,44 interfaced to the ATMOL integral and self-
consistent-field package.79 The QM contributions to the total
interaction energy serve as a basis of comparison for the
parametrization of the classical model.

The atomic charges of water and benzene were derived
employing the Opep package,42 using 2375 and 8070 grid
points, respectively. As shown in Table 1, the molecular
electrostatic potential of an isolated water molecule is
reproduced with a mean error of about 48% when use is
made of atom-centered charges only. As water is one of the
most important components in computer simulations of
condensed phases, in particular, in biological systems, an
appreciable error in the description of its electrostatic
potential is not acceptable. An improvement of the rudi-
mentary three-point (3-p) charge model is, therefore, pro-
posed. The simplest way to improve the reproduction of the
potential consists in adding a fictitious site along the bisector
of the molecule, in the spirit of the TIP4P80,81 model.

∆U ind
MM/TT ) 1

2 ∑
A

∑
B*A

∆Qt
aTtu

abf3(�;rab)Qu
b (2)

∆Qt
a ) - ∑

B*A

Rtt'
aa'Tt'u

a'bf3(�;ra'b)(Qu
b + ∆Qu

b) (3)

f3(�;rab) ) 1 - exp(-�rab) ∑
k)0

3 (�rab)
k

k!
(4)
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As can be seen in Figure 1, a minimum in the root-mean-
square deviation between the QM and the point-charge
derived potentials can be found when moving the fictitious
site. At this minimum, the additional charge is located 0.276
Å below the oxygen atom (see “Water (4-p)” in Table 1).
The resulting enhanced agreement with the target electrostatic
potential can be largely explained by the position of the
supplementary charge, closer to the center of the molecule.
This result is consistent with the nearly isotropic molecular
electrostatic potential of water.54 In the case of benzene, as
was shown in a recent article,82 the use of atom-centered
charges is sufficient to model the electrostatic potential with

an acceptable accuracy. As can be seen in Table 1, a
comparable agreement between the QM potential and that
regenerated from point charges is also found here.

Penetration of electron clouds results in a short-range
contribution, which, for completeness and for attaining the
desired accuracy in the reproduction of the intermolecular
interaction energy, ought to be included in the electrostatic
model. Toward this end, a novel parametrization of the
function of Cisneros et al. was probed, wherein the term Ωij

of eq 4 in ref 60 had been modified. Though conceptually
simple, the expression proposed to account for penetration
effects lacks generality to be of routine practical use for the
modeling of large biomolecular assemblies. For this reason,
no analytical correction of penetration effects will be
introduced explicitly in the intermolecular potential but will
instead be incorporated in the van der Waals potential.

The induction energy was mapped employing the Opep
package,42 with grids of 3905 and 3192 points for water and
benzene, respectively (see refs 9 and 43 for details). The
models of distributed polarizabilities utilized herein rely on
a multipole expansion of the molecular polarizability reduced
to a combination of zeroth-order charge flow (R00, 00) and
first-order isotropic dipole (R1κ, 1κ) polarizabilities. For clarity,
it should be noted that charge-flow polarizabilities are not
equivalent to the popular fluctuating charges,20-23 which are
based on a partial equalization of orbital electronegativities
and, hence, are very different in spirit. The complete set of
parameters fitted simultaneously to quantum-mechanically
determined induction energy maps53 has been shown to
reproduce with appreciable accuracy the average molecular
polarizability alongside its intrinsic anisotropy. The distrib-
uted polarizabilities are reported in Table 2 for water and

Table 2. Models of Distributed Polarizabilities and
Regenerated Molecular Polarizabilities of Water and
Benzene at the MP2(Full)/Sadlej//MP2(Full)/
6-311++G(2d,2p) Level of Approximationa

molecular polarizabilities

distributed polarizabilities regenerated MP2(Full)/Sadlej

water R00,00
OH –0.808 R10, 10 10.177 9.747

R1κ,1κ
OO 8.1808 R11c, 11c 11.483 10.058

R11s, 11s 8.180 9.539
rmsd 0.127
∆ε 7.000

benzene R00,00
CC –1.822 R10, 10 47.537 45.121

R00,00
CH –0.280 R11c, 11c 89.089 81.333

R1κ,1κ
CC 7.953 R11s, 11s 89.089 81.333

rmsd 0.025
∆ε 2.737

a All polarizabilities are given in atomic units. The root-mean-
square deviation (rmsd) between the induction energies deter-
mined quantum-mechanically and regenerated from the models of
distributed polarizabilities is expressed in 10-3 au. The
corresponding mean error, ∆ε, is given in percent.

Table 3. Dipole Polarizability of Ions Computed at the
MP2(Full)/Sadlej Level of Approximation

K+ F- Cl- Br- I-

R1κ, 1κ (a.u.) 5.174 10.513 30.316 39.074 60.333
R1κ, 1κ

exp (a.u.)a 5.736 9.313 26.588 35.226 52.704
R1κ, 1κ

exp (a.u.)b 5.473 10.527 29.760 39.410 60.128

a Ref 83. b Ref 84.

Table 1. Models of Net Atomic Charges and Regenerated
Multipole Moments for Water and Benzene at the
MP2(Full)/Sadlej//MP2(Full)/6-311++G(2d,2p) Level of
Approximationa

molecular multipoles

point charges regenerated MP2(Full)/Sadlej

water (3-p) Q00
O –0.672 Q10 –0.749 –0.732

Q00
H –0.336 Q20 –0.189 –0.231

rmsd 0.990
∆ε 48.573

water (4-p) Q00
X –1.237 Q10 –0.730 –0.732

Q00
O 0.000 Q20 –0.200 –0.231

Q00
H –0.6185

rmsd 0.231
∆ε 6.258

benzene (12-p) Q00
C –0.124 Q20 –5.553 –5.655

Q00
H 0.124 Q40 120.200 163.700

rmsd 0.219
∆ε 20.849

a All multipoles are expressed in atomic units. The root-mean-
square deviation (rmsd) between the electrostatic potentials deter-
mined quantum-mechanically and regenerated from the point
charge models is expressed in 10-3 au. The corresponding mean
error, ∆ε, is given in percent.

Figure 1. (a) Root-mean-square deviation (RMSD) between
the electrostatic potentials determined quantum-mechanically
and the point charge model expressed as a function of the
position of the dummy atom for water along the C2 axis. (b)
Corresponding mean error (∆ε) expressed as a function of
the position of the dummy atom for water along the C2 axis.
(c) Value of the atomic charge of the dummy atom expressed
as a function of the position of the dummy atom for water
along the C2 axis. (d) Value of the atomic charge of the
hydrogen atom expressed as a function of the position of the
dummy atom for water along the C2 axis.

J. Chem. Theory Comput., Vol. 5, No. 11, 2009 3025



benzene and in Table 3 for all the ions considered as
polarizable in this work.

Damping parameters are determined with the objective to
reproduce the induction energy supplied by SAPT. The first
damping function considered is that of Jensen et al., the
parameters of which can be found for a number of atom
types. For the Tang and Toennies damping function,
parameters are given for pair interactions. In some cases,
no damping is necessary, due to the importance of the
nonmultipolar contribution to the induction energy, as has
been documented by Torheyden and Jansen.49 This contribu-
tion to the induction cannot be extracted from the SAPT
expansion and, hence, cannot be modeled explicitly in the
model proposed here. This missing information can still be
added in an appropriately chosen form of the van der Waals
potential, compatible with the exponential, repulsive nature
of nonmultipolar contributions.

The last contribution to the total energy is the van der
Waals potential, which, in the SAPT expansion, is considered
as being the sum of exchange and dispersion terms. As
outlined previously, both the electrostatic and the induction
models adopted here lack a number of contributions that
cannot be accounted for to satisfy the stringent criteria of
simplicity and tractability. Since the overall model is not
sufficiently precise at short distances and when dealing with
appreciable nonmultipolar effects, determination of the van
der Waals parameters was not carried out on the basis of
the exact contribution supplied by the SAPT expansion but
using a slightly modified term, which is the total energy
(∆U tot

SAPT) minus the electrostatics and induction components
of the molecular-mechanical potential. This statement implies
that the optimized van der Waals parameters inherently
depend on the electrostatic and induction models that have
been used here. In other words, modification of either the
electrostatic or the polarization term necessarily imposes a
requirement that the van der Waals potential be adjusted.
Derivation of these parameters was achieved employing a
Levenberg-Marquart algorithm.85 The range of chemically
and biologically relevant distances spans from a minimum
separation, where the energy is roughly equal to ∆U tot, min

SAPT

- 10 kcal/mol, to a quasi-infinite one. The van der Waals
contribution was determined on the basis of three alternate
functions, that is, Lennard-Jones,69 Halgren71 and Bucking-
ham.72 The exponential nature of the repulsive van der Waals
contribution makes the Buckingham exp-6 potential a well-
suited candidate to model the van der Waals contribution
and short-range interactions, such as nonmultipolar terms.

4. Results and Discussion

4.1. Interaction of Water with Metal Cations. Classical
models derived to describe the interaction of cations and
anions with water molecules are to a large extent suboptimal.
This can be ascribed to three main reasons, recently
highlighted in a study covering the interaction of water with
a divalent calcium cation.9 First, a significant error arises
on account of the rudimentary representation of the molecular
electrostatic potential for water by means of a three-point
(3-p) charge model, which misreproduces the target quantity

by up to 50%. Second, the description of the exchange-
induction term of the SAPT expansion using the damping
function devised by Jensen et al., while constituting a
judicious choice, appears to suffer from a number of
shortcomings. Last, the most questionable aspect of the
proposed polarizable model lies in the use of the 6-12 LJ
potential, traditionally utilized in macromolecular force fields.
As was shown, however, this potential systematically fails
to reproduce in a consistent fashion the exchange and
dispersion contributions to the intermolecular energy com-
puted within the SAPT framework. This shortcoming has
prompted several authors to turn to more appropriate
functions.6,27,86-88 To address the above issues, the interac-
tion of a series of metal ions with water has been investigated
(see Figure 2). For conciseness, only the water-sodium

Figure 2. (a) Interaction of a water molecule with a cation
along the C2 axis. (b) Interaction of a water molecule with an
anion along the O-H bond. (c) Interaction of a water molecule
with another water molecule defining a hydrogen bond. (d)
Interaction of the benzene molecule with a cation along the
C6 axis.

Figure 3. Interaction of a monovalent sodium ion with water.
The reference (SAPT) curve is shown as a solid line. Three
models for the electrostatic contribution are represented through
either no penetration with a three-point (3-p) charge model
(dotted line), a four-point (4-p) charge model (long-dashed line),
or the function derived by Cisneros et al. (dot-dashed line). Three
models for the induction contribution are represented using either
no damping (dotted line), the damping function derived by
Jensen et al. (long-dashed line), or the damping function derived
by Tang and Toennies (TT, short-dashed line). Three models
for the van der Waals contribution are fitted to ∆U tot

SAPT -
∆U ele

4-p - ∆U ind
4-p/TT using either a Buckingham (short-dashed line),

a Halgren (long dashed line), or a Lennard-Jones (LJ, dotted
line) potential. The total energy is computed as the sum of
∆U ele

4-p plus ∆U ind
4-p/TT plus either ∆U vdW

4-p/LJ (short-dashed line) or
∆U vdW

4-p/Buckingham (dotted line).
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interaction will be detailed here (see Figure 3); results for
all of the systems are provided in the Supporting Information.

As can be observed in Figure 3, the electrostatic contribu-
tion is equally well reproduced using a 4-p or the 3-p charge
model. This result is not surprising given that the cation
approaches water along the C2 axis of the latter. Error in the
reproduction of the molecular electrostatic potential in the
direction of the bisector, on the order of 5% at the equi-
librium intermolecular distance, is equivalent for the two
models. This, unfortunately, is no longer true when the
molecular electrostatic potential is measured quantum-
mechanically along the O-H bond. In this event, the error
reaches 15% for the 3-p charge model, but only 5% for the
4-p one. The electrostatic term modified by a penetration
function is also displayed in Figure 3. This modification
suggested by Cisneros et al. improves the accuracy of the
model at short distances, even though, for water-cation
dimers, the effect of electron-cloud penetration is nearly
negligible at distances around the intermolecular equilibrium
separation (around 2.2 Å). As underlined in the previous
section, this correction to the electrostatic potential will not
be introduced explicitly but will, instead, be embedded in
the relevant representation of the van der Waals potential,
thereby simplifying the model, while remaining physically
consistent.

The undamped induction energy of the classical model
overestimates the quantity supplied by the SAPT expansion.9

The damping functions considered here are that of Jensen
et al. and that of Tang and Toennies. The latter function is
to be favored over the former, as is reflected in the better
behavior of the corresponding damped potential. All of the
parameters determined for these damping functions are
gathered in Tables 4 and 5.

The negligible errors in the reproduction of the electrostatic
and induction contributions in water-cation complexes
makes the total energy (∆U tot

SAPT) minus ∆U ele
4-p and

∆U ind
4-p/TT very similar for the SAPT van der Waals contribu-

tion (∆U vdW
SAPT). Employing a traditional 6-12 LJ function,

the repulsive component of the latter results in a systematic
failure to match the target van der Waals potentialsthe
associated error is magnified when the induction effects
dominate over the Coulomb and dispersion components.
Conversely, if use is made of a Halgren or a Buckingham
function, reproduction of this potential proves to be extremely
accurate. Although depicted in Figure 3, the Halgren function
will not be used hereafter, because the exponential part of
the exp-6 Buckingham function constitutes a more physically

sound framework, capable of absorbing the errors due to
penetration effects. Interestingly enough, nonmultipolar
contributions to the induction energy appear to be negligible
in water-cation interactions and can, thus, be safely omitted.
All of the parameters of the aforementioned three van der
Waals functions are given in Table 6. These parameters are
the raw coefficients for each interaction in the absence of
combination rules.

When adding the different terms of the potential energy
function, the total interaction energy is reproduced accurately,
hence, confirming the applicability of the model (see Tables
7 and 8 for geometrical and energetic properties of the
minimum-energy complex). Not too unexpectedly, calcula-
tions based on a LJ potential lead to a severely flawed
reproduction of the total interaction energy.

4.2. The Water Dimer and Interaction of Water
with Anions. In this section, the first four halide ions have
been considered to interact with water along one O-H bond
of the latter, which corresponds to the most favorable
approach of these chemical species. In addition, a water
dimer has been examined in the geometry provided in ref
89 (see also Figure 2). The results obtained for these two
classes of complexes show similar trends. For conciseness,
only the interaction in the water dimer will be detailed here
(see Figure 4); results for all of the systems are provided in
the Supporting Information.

The importance of the 4-p charge model ought to be
emphasized for the reproduction of the electrostatic potential.
Even at distances where penetration effects are known to be
negligible, the 3-p charge model fails to reproduce the
electrostatic contribution, whereas the 4-p charge model
describes it successfully. Inclusion of a penetration correction
yields an overall agreement between the classical model and
the QM reference, irrespective of the intermolecular distance
explored. Penetration effects for water-anion systems, as
well as for the water dimer are crucial, as they account for
up to 50% of the total electrostatic contribution at very short
distances. They are, nonetheless, noticeably smaller (ap-
proximately 8%) at an intermolecular distance corresponding
to the minimum-energy complex. Accordingly, it is reason-
able to expect that penetration effects can be transferred in
an effective fashion into the van der Waals potential, as
discussed previously.

When penetration effects are large, nonmultipolar contri-
butions are anticipated to be equally substantial. In this event,
the induction term is burdened by overwhelming nonmul-
tipolar stabilizing effects, which counterbalance the desta-
bilizing effect of the exchange-induction component. These
antagonistic phenomena preclude the use of a damping
function for the present complexes. As can be seen in Table
5, no damping function is used, except for fluoride, which
is the smallest anion with the least nonmultipolar effects.
The missing nonmultipolar contribution to the induction
energy will, thus, be incorporated into the Buckingham
potential.

The conclusions reached in light of the calculations based
on the water-cation dimers appear to hold also for the present
complexes. Furthermore, the assumption that an exp-6 Buck-
ingham potential, unlike a 6-12 LJ potential, can compensate

Table 4. Values of the Jensen et al. Damping Parameter
(a) for Each Atom Type

Li+ Na+ K+ Mg2+ Ca2+ O(H2O) X(H2O) H(H2O)

a 0.095 0.085 0.190 0.200 0.105 4.103 4.103 0.358

Table 5. Values of the Damping Parameter (�) in the Tang
and Toennies Damping Functiona

� Li+ Na+ K+ Mg2+ Ca2+ F-

H2O 2.38 2.00 2.15 2.10 2.10 4.50
benzene 2.10 1.70 1.75 1.85 1.85

a Each value corresponds to a pair of interactions.
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for the incompleteness of the classical model by embracing its
overlooked, sizable contributions proves to be perfectly legiti-
mate and reasonable (see Tables 7 and 8).

In the particular instance of negatively charged com-
pounds, the SAPT expansion can, under certain circum-
stances, fail to converge.90 For this reason, the results (not

shown here) supplied by an SAPT and an RVS91 expansion,
using the Gamess92 suite of programs, have been compared.
If intramolecular correlation is ignored, the RVS and the
SAPT expansions yield the same energies for all the dimers
considered here, which provides a safeguard, inasmuch as
convergence of the SAPT reference calculation is concerned.
Moreover, the recent work of Kim et al.93 on halide anions
interacting with π systems further suggests convergence of
the SAPT expansion for such dimers.

4.3. Interaction of Benzene with Metal Cations. The
same series of metal cations utilized in the above study of
water-cation dimers was considered for the interaction with
benzene along its C6 axis (see Figure 2). This approach
corresponds to the most favorable interaction pattern94 for a
π-electron cloud interacting with a positively charged species.
For conciseness, only the benzene-sodium interaction will
be displayed in Figure 5; results for all systems investigated
(viz., Li+, K+, Mg2+, and Ca2+) are provided in the
Supporting Information.

A twelve-point (12-p) charge model derived from the
molecular electrostatic potential tends to overestimate the
interaction in cation-π systems, despite the appropriate
reproduction of the molecular quadrupole moment of benzene
and, more generally, its full molecular electrostatic potential.
This overestimation is more prone to be manifested with ions
bearing a highly localized charge and, on the contrary, is
expected to be less perceptible for a diffuse charge, as in
the case of ammonium,43 let alone guanidinium. The results
suggest that the interaction of cations with π systems is not
strictly speaking an attractive quadrupole-charge one.94 A
case in point is the benzene-lithium dimer, where the
electrostatic energy changes its slope at very short distances,

Table 6. van der Waals Parameters for H2O-X Systemsa

Li+ Na+ K+ Mg2+ Ca2+ F- Cl- Br- I- H2O

(1)
ε 19149 66526 120694 94937 94131 5837 11843 12340 17204 14946
A1 3.944 4.147 3.842 3.900 3.738 3.598 3.352 3.106 3.132 3.949
A2 0.025 0.032 1.418 3.385 2.332 0.019 1.679 2.600 0.034 2.541

(2) ε 0.041 0.100 0.115 0.433 0.151 0.003 0.021 0.025 0.038 0.041
R* 3.412 3.390 3.880 2.848 3.700 5.132 4.113 4.205 4.284 2.864

(3) ε 468.3 94.27 11.58 1308 7.547 65.52 93.85 323.2 12.20 61468
σ 1.302 1.715 2.395 1.355 2.405 1.301 1.600 1.566 2.248 0.763

a The parameters are obtained using a model of point charges and an induction model of distributed polarizabilities damped by the
function of Tang and Toennies. (1) ε and An (n ) 1, 2) correspond to the parameters of the Buckingham function. (2) ε and R* are the
parameters of the Halgren function. (3) ε and σ correspond to the parameters of the Lennard-Jones function. ε is given in kilocalories per
mole. All other parameters are in ångströms.

Table 7. Values of the Interaction Distance for All the Minimum-Energy Complexesa

dA.. .B Li+ Na+ K+ Mg2+ Ca2+ F- Cl- Br- I- H2O

H2O 1.90 2.22 2.70 1.90 2.30 1.60 2.20 2.40 2.70 2.10
1.90 2.25 2.66 1.90 2.30 1.60 2.20 2.40 2.70 2.10

benzene 1.90 2.41 2.85 2.02 2.40
1.90 2.41 2.90 1.92 2.40

a The reference quantum-mechanical values are given in bold. All distances are expressed in ångströms.

Table 8. Values of the Interaction Energy for All the Minimum-Energy Complexesa

∆U tot,min Li+ Na+ K+ Mg2+ Ca2+ F- Cl- Br- I- H2O

H2O –32.63 –22.91 –16.85 –78.80 –52.98 –22.38 –13.07 –11.14 –9.25 –3.60
–32.69 –23.12 –16.91 –79.85 –52.75 –22.46 –13.00 –11.08 –9.22 –3.60

benzene –37.45 –23.41 –17.57 –114.17 –74.25
–37.43 –23.70 –17.60 –116.41 –74.23

a The reference quantum-mechanical values are given in bold. All energies are expressed in kilocalories per mole.

Figure 4. Interaction of two water molecules. The reference
(SAPT) curve is shown as a solid line. Three models for the
electrostatic contribution are represented through either a
three-point (3-p) charge model with no penetration (dotted
line), a four-point (4-p) charge model with no penetration (long-
dashed line), or the function derived by Cisneros et al. (dot-
dashed line). The induction contribution is represented without
damping function (dotted line). Three models for the van der
Waals contribution are fitted to ∆U tot

SAPT - ∆U ele
4-p - ∆U ind

4-p using
either a Buckingham (short-dashed line), a Halgren (long
dashed line), or a Lennard-Jones (LJ, dotted line) potential.
The total energy is computed as the sum of ∆U ele

4-p plus ∆ ind
4-p

plus either ∆U vdW
4-p/LJ (short-dashed line) or ∆U vdW

4-p/Buckingham

(dotted line).
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which, in all likelihood, is due to the positively charged lobes
of the quadrupole moment interacting with the cation. The
resulting destabilizing effect, which largely counterbalances
the penetration contribution, is not accounted for in the
electrostatic potential and is transferred to a short-distance,
repulsive van der Waals term.

As noted above for the cation-water complexes, the
undamped induction energy overestimates the values ob-
tained from an SAPT analysis, but inclusion of the Tang
and Toennies damping formalism reproduces the SAPT
induction profile very nicely. Similarly, the 6-12 LJ potential
departs markedly from the SAPT van der Waals contribution,
which is always better reproduced when Halgren or Buck-
ingham functions are used. Conclusions drawn on the basis
of the water-cation complexes are shown to hold for all
other π-cation interactions reported herein (van der Waals
parameters are gathered in Table 9, and the geometrical and
energetic properties of the minimum-energy complex are
given in Tables 7 and 8).

5. Conclusion

The present study addresses the shortcomings of a simplified
polarizable potential energy function and how these short-
comings can be overcome to model with an appreciable
accuracy intermolecular interactions. It is desirable to have
access to a simple polarizable potential energy function that
satisfies the criteria of tractability and precision. This
necessarily demands that important choices be made, inas-
much as the contributions to be included are concerned. In
other words, it is pivotal that all of the underlying physics
of the interactions be properly introduced to reflect the
various contributions at play.

With this objective in mind, a series of guidelines is
proposed. These guidelines can be summarized as follows.
The electrostatic contribution to the total energy is described
by a truncation of the molecular electrostatic potential at the
monopole level, which has proven in many instances to
constitute a very reasonable approximation.52 As indicated
by Swart et al.,95 this description leads to small errors for
nonsymmetric systems but can fail in the case of small,
symmetric molecules. Such is the case for the water
molecule, where fictitious sites are needed to enhance the
reproduction of the true molecular electrostatic potential.
Accordingly, a TIP4P-like80,81 potential was proposed for
water. In addition to the first-order contribution to the total
energy, penetration effects are present at short distances in
all interacting systems. This term can be modeled with an
exponential function and can be introduced through the exp-6
Buckingham potential. The total interaction energy is further
decomposed into an induction component, which, at the
classical level, relies on the conjunction of charge-flow
polarizabilities between covalently bonded atoms and iso-
tropic dipole polarizabilities determined from QM induction
energy maps.

The resulting polarizable models are simple, yet suf-
ficiently accurate for recovering the anisotropy of the
molecular polarizability. In most circumstances, the damping
function proposed by Tang and Toennies recovers the
exchange-induction contribution. This particular function can
be expanded up to third order only, which greatly simplifies
its calculation. Furthermore, when the nonmultipolar com-
ponent to the induction energy cannot be neglected, a
classical multipole expansion systematically underestimates
the polarization part of the interaction energy. Should this
situation arise, it is necessary to remove the damping function
from the model and encapsulate this stabilizing effect through
another suitable function. The remaining terms of the QM
expansion that are described explicitly can be incorporated
in a single contribution that involves the exp-6 Buckingham
potential. The latter is highly appropriate because it encom-
passes each and every missing term that can be expressed
by way of an exponential, repulsive representation.

Extension of the present work to an all-atom description
for the van der Waals potential is underway to provide a
better three-dimensional description of the short-range

Figure 5. Interaction of a monovalent sodium ion with
benzene. The reference (SAPT) curve is shown as a solid
line. The electrostatic contribution obtained with a twelve-point
(12-p) charge model with no penetration is represented as a
dotted line. Two models for the induction contribution are
represented using either no damping (dotted line) or the
damping function derived by Tang and Toennies (TT, short-
dashed line). Three models for the van der Waals contribution
are fitted to ∆U tot

SAPT - ∆U ele
12-p - ∆U ind

12-p/TT using either a
Buckingham (short-dashed line), a Halgren (long dashed line),
or a Lennard-Jones (LJ, dotted line) potential. The total energy
is computed as the sum of ∆U ele

12-p plus ∆U ind
12-p/TT plus either

∆U vdW
12-p/LJ (short-dashed line) or ∆U vdW

12-p/Buckingham (dotted
line).

Table 9. van der Waals Parameters for Benzene-Xn+

Systemsa

Li+ Na+ K+ Mg2+ Ca2+

(1)
ε 3556 8821 38649 103962 61104
A1 2.624 2.841 2.924 3.184 2.753
A2 2.419 0.067 3.502 4.583 4.661

(2) ε 0.002 0.016 0.104 0.138 0.157
R* 6.331 4.871 4.261 3.471 4.157

(3) ε 8124 539.9 6.103 33.21 9.573
σ 2.624 2.841 2.924 1.860 2.753

a The parameters are obtained using a model of point charges
on atoms with no penetration and an induction model of distributed
polarizabilities damped by the function provided by Tang and
Toennies. (1) ε and An (n ) 1, 2) correspond to the parameters of
the Buckingham function. (2) ε and R* are the parameters for the
Halgren function. (3) ε and σ correspond to the parameters of the
Lennard-Jones function. ε is given in kilocalories per mole. All
other parameters are in ångströms.
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potential. The very encouraging results reported herein
suggest that the proposed methodology for deriving polariz-
able force fields on the basis of a small set of prototypical
interacting chemical species can be readily extended to more
complex molecular systems.
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Georg Jansen, and Krzysztof Szalewicz for stimulating
discussions. The authors are indebted to the Centro de
Supercomputación de Catalunya, Barcelona, Spain, and to
the Centre Informatique National de l’Enseignement Su-
périeur, Montpellier, France, for provision of generous
amounts of computational time.

Supporting Information Available: Intermolecular
energy profiles for water and benzene interacting with halide
and metal ions. This material is available free of charge via
the Internet at http://pubs.acs.org.

References

(1) Yin, Y.; Arkhipov, A.; Schulten, K. Structure 2009, 17, 882–
892.

(2) Lei, H.; Duan, Y. J. Mol. Biol. 2007, 370, 196–206.

(3) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz,
K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.;
Caldwell, J. C.; Kollman, P. A. J. Am. Chem. Soc. 1995,
117, 5179–5197.

(4) MacKerell, A. D., Jr.; et al. J. Phys. Chem. B 1998, 102,
3586–3616.

(5) Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F.
J. Comput. Chem. 2004, 25, 1656–1676.

(6) Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.
J. Phys. Chem. A 2003, 108, 621–627.

(7) Freddolino, P. L.; Liu, F.; Gruebele, M.; Schulten, K. Biophys.
J. 2008, 94, 75–77.

(8) Freddolino, P. L.; Park, S.; Roux, B.; Schulten, K. Biophys.
J. 2009, 96, 3772–3780.

(9) Dehez, F.; Archambault, F.; Soteras, I.; Luque, F. J.; Chipot,
C. Mol. Phys. 2008, 106, 1685–1696.

(10) Shiratori, Y.; Nakagawa, S. J. Comput. Chem. 1991, 12, 717–
730.

(11) Project, E.; Nachliel, E.; Gutman, M. J. Comput. Chem. 2008,
29, 1163–1169.

(12) Bucher, D.; Guidoni, L.; Maurer, P.; Rothlisberger, U.
J. Chem. Theory Comput. 2009, 5, 2173-2179.

(13) Allen, T.; Andersen, O.; Roux, B. Biophys. Chem. 2006, 124,
251–267.

(14) Fowler, P. W.; Stone, A. J. J. Phys. Chem. 1987, 91, 509–
511.

(15) Gavezzotti, A. J. Phys. Chem. B 2002, 106, 4145–4154.

(16) Gavezzotti, A. J. Phys. Chem. B 2003, 107, 2344–2353.

(17) Welch, G. W. A.; Karamertzanis, P. G.; Misquitta, A. J.; Stone,
A. J.; Price, S. L. J. Chem. Theory Comput. 2008, 4, 522–
532.

(18) Barnes, P.; Finney, J. L.; Nicholas, J. D.; Quinn, J. E. Nature
1979, 282, 459–464.

(19) Lamoureux, G.; Roux, B. J. Chem. Phys. 2003, 119, 3025–
3039.

(20) Rappe, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95,
3358–3363.

(21) Stern, H. A.; Kaminski, G. A.; Banks, J. L.; Zhou, R.; Berne,
B. J.; Friesner, R. A. J. Phys. Chem. B 1999, 103, 4730–
4737.

(22) Patel, S.; Brooks, C. L. J. Comput. Chem. 2003, 25, 1–16.

(23) Patel, S.; Mackerell, A. D., Jr.; Brooks, C. L. J. Comput.
Chem. 2004, 25, 1504–1514.

(24) Sanderson, R. T. In Chemical Bonds and Bond Energy;
Academic Press: New York, 1976; pp 1-15.

(25) Le Sueur, C. R.; Stone, A. J. Mol. Phys. 1994, 83, 293–307.

(26) Engkvist, O.; Åstrand, P.-O.; Karlström, G. Chem. ReV. 2000,
100, 4087–4108.

(27) Ren, P.; Ponder, J. W. J. Comput. Chem. 2002, 23, 1497–
1506.

(28) Hagberg, D.; Brdarski, S.; Karlström, G. J. Phys. Chem. B
2005, 109, 4111–4117.

(29) Gresh, N.; Cisneros, G. A.; Darden, T. A.; Piquemal, J.-P.
J. Chem. Theory Comput. 2007, 3, 1960–1986.

(30) Darley, M. G.; Popelier, P. L. A. J. Phys. Chem. A 2008,
112, 12954–12965.

(31) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys.
Chem. 1987, 91, 6269–6271.

(32) Masella, M.; Flament, J. P. J. Chem. Phys. 1997, 107, 9105–
9116.

(33) Zhang, Q.; Zhang, X.; Yu, L.; Zhao, D.-X. J. Mol. Liq. 2009,
145, 58–66.

(34) Zhang, Q.; Zhang, X.; Zhao, D.-X. J. Mol. Liq. 2009, 145,
67–81.

(35) Babin, V.; Baucom, J.; Darden, T. A.; Sagui, C. J. Phys.
Chem. 2006, 110, 11571–11581.

(36) Harder, E.; MacKerell, A. D., Jr.; Roux, B. J. Am. Chem.
Soc. 2009, 131, 2760–2761.

(37) Claverie, P. In Intermolecular Interactions: From Diatomics
to Biopolymers; Pullman, B., Ed.; Wiley Interscience: New
York, 1978; pp 69-305.
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(43) Dehez, F.; Ángyán, J. G.; Soteras, I.; Luque, F. J.; Schulten,
K.; Chipot, C. J. Chem. Theory Comput. 2007, 3, 1914–
1926.

(44) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. ReV. 1994,
94, 1887–1930.

(45) Bukowski, R.; Cencek, W.; Jankowski, P.; Jeziorska, M.;
Jeziorski, B.; Kucharski, S. A.; Lotrich, V. F.; Misquitta, A. J.;
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Abstract: Photochemical processes that take place in biological molecules have become an
increasingly important research topic for both experimentalists and theoreticians. In this work,
we report the reaction mechanism of a model of the photoactive yellow protein (PYP)
chromophore in vacuo. The results obtained here, using a strategy based on the simultaneous
use of the minimum energy path concept and the quantum theory of atoms in molecules applied
to this excited state process, suggest a possible way in which the protein could increase the
efficiency of the reaction. The role played by other electronic states of the same and different
spin multiplicities in the reaction process is also analyzed, with special emphasis on that played
by the lowest-lying triplet state. The possibility of a more complex than expected reaction
mechanism is finally discussed, with some suggestions on the possible roles of the protein.

1. Introduction

The photoactive yellow protein (PYP) is a cytosolic protein
found in certain types of bacteria. It works as a sensor, being
responsible for the negative phototactic response of these
bacteria when exposed to blue light.1,2 The protein uses its
chromophore, the p-hydroxycinnamoyl anion, as a molecular
motor able to transform the energy of light into chemical
work. This energy is employed for the modification of the
conformation of the chromophore in the protein through a
fast trans-to-cis isomerization process, part of which takes
place in an excited electronic state. This change in the
structure of the chromophore ultimately prompts a series of
conformational changes in the protein structure that lead to

the generation of a response of the organism, which moves
away from the blue light source.

Together with rhodopsin, PYP is perhaps one of the most
exhaustively studied protein photoreceptors, both experimen-
tally1,2 and theoretically.3-13 The most accepted mechanism
for the early events of the photocycle, based on experimental
measurements1,2,14 and molecular dynamics simulations,6,7

points to a conical intersection (CI) mediated process as the
one responsible for the formation of the cis isomer. The role of
the hydrogen bond network of amino acids close to the
chromophore in controlling the maximum absorption and the
isomerization process has also been discussed, with particular
emphasis on the function of Cys69, Glu46, and Tyr42

6,11,12,14

residues. The possible electrostatic control exerted by the
counterion of the chromophore (Arg52) has also been addressed
with conflicting results.7,15 Moreover, a clear differentiation
between the intrinsic properties of the chromophore and the
effects of the protein in the full reaction process has remained
elusive, in part due to the difficulties of performing experiments
with anionic substances in vacuo, to the problems associated
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with the interpretation of the results obtained with the protein,
and also to the complexities inherent in the theoretical modeling
of large biological molecules and anionic systems, particularly
when involved in excited state reactions. Thus, and despite all
of the efforts carried out to date, this reaction remains not fully
understood. Its complex nature, which combines short reaction
times, different electronic states, and a complex anionic chro-
mophore, turns this process into a challenge for both experi-
mentalists and theoreticians. As a continuation of previous
work12 on the PYP photochemistry where the role of the protein
in the control of the absorption wavelength was disentangled,
we now focus on the intrinsic reactivity and structural properties
of a model chromophore of the p-hydroxycinnamoyl anion (see
Figure 1) in vacuo, as an initial step for understanding the
possible role of the protein in the early events of the isomer-
ization process. This model differs from the natural chro-
mophore as well as other chromophore models used in previous
works3,4,8,10,11,16 dealing with different aspects of the photo-
chemistry of PYP. The reason for selecting this model is two-
fold. On the one hand, the insights obtained with this reduced
model, disentangled of the protein environment and linkage,
will show the intrinsic behavior of the central structure and the
isomerizing double bond17 while at the same time allowing a
differential comparison with the full protein. On the other hand,
the results obtained can be compared with recent experimental
observations where the fast dynamics of this chromophore were
analyzed and proven to be similar (in the isomerization time
and also in the coherence reflecting the involvement of low-
frequency motions in isomerization17) to that of the protein.
Furthermore, the nature of the lowest-lying electronic excited
state is qualitatively similar (the dominant configuration is
characterized by an excitation that involves the same kind of
orbitals, and it also displays a significant value of the related
oscillator strength) to that of the full protein model,12 thus
indicating that the model is a reliable one.

To tackle this problem, we employed a combined strategy
based on the use of the minimum energy path (MEP) approach,
which can be considered a zero-order static description of the
reactive process that takes place in the first low-lying excited
state (the bright πf π* state, S1), together with the application
of the quantum theory of atoms in molecules (QTAIM)18 for
understanding the key changes in the molecular structure of
the chromophore, an intrinsic aspect that may also help to shed
light on the favorable reaction mechanism, while at the same
time rendering some insight into the role of the protein. The
theoretical description of reactive processes that take place in
excited electronic states also needs a method that can describe
in a balanced way all of the electronic states involved, which
can be very different in their chemical nature.19 The method
must not only be qualitatively correct but also reasonably precise
at a moderate computational cost. Moreover, it must also be

able to describe situations where energetic degeneracy is present
and nonadiabatic effects have a fundamental contribution. For
molecules of this size, the CASPT2/CASSCF method (i.e.,
CASSCF optimizations followed by CASPT2 single-point
computations) has proven to be a flexible as well as compu-
tationally affordable tool. It combines both the ability of
describing in a balanced way electronic states of a different
nature, which ultimately allows the method to characterize a
full reaction path, with a reasonable accuracy, being able to
account for the dynamic correlation effects. The reliability of
this theoretical approach in the description of the kind of reactive
process discussed here has been proven in similar12 and related
systems.20-24

Since rationalizing the chemical nature of excited elec-
tronic states is not always easy, we have used QTAIM18 to
avoid any methodological bias. This is a generalization of
quantum mechanics to open systems that provides orbital
invariant chemical bonding indicators and a topological
partition of the physical space into quantum atoms which
provide additive contributions to every global quantum
mechanical expectation value (see Supporting Information
for further details).

In this work, we will focus on the reaction path associated
with the twisting of the C7-C8 double bond (see Figure 1)
in the selected model chromophore. Even when it has been
experimentally shown using blocked chromophores similar
to the natural one that both single and double bond twisting
can be active in the photochemical deactivation process, the
C7-C8 double bond twisting has proven to be involved in
the main reaction channel.25 This has also been recently
shown through direct observation of the fast in vacuo
dynamics of the model chromophore used in this work.17

Moreover, in the case of the chromophore embedded in the
protein, single-bond twisting of the C1-C7 seems unlikely,
as such a process will suffer the steric hindrance imposed
by the protein structure. As a final result, we will also discuss
the possible role that the triplet state can have in this and
other photochemical processes carried out by biological
photoreceptors.

2. Theoretical Methods

We have used the CASPT2/CASSCF strategy in the descrip-
tion of this photochemical process. The relevant critical
points as well as the MEP optimized geometries in the S1

potential energy surface (PES) have been located using a
two-roots-equal-weights state average CASSCF level of
theory (see Supporting Information for details). An active
space that comprises 12 electrons in 11 π-like orbitals has
been used. Due to the nature of the electronic states involved
and its sensitivity to the quality of the basis set employed,11

we have used a flexible and reasonably large ANO-S basis
set26 with contraction, C,O[4s3p1d]/H[2s1p]. To account for
the dynamic correlation effects, at each optimized point we
have carried out CASPT2 calculations using as reference
wave functions those obtained at the six-roots-equal-weights
state average CASSCF level with an active space of 16
electrons in 13 orbitals, where the n (lone pair) orbitals of
both oxygen atoms were included, following the same
strategy used in a previous work in the full (PYP) protein.12

Figure 1. Model of the PYP chromophore considered in this
study.
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This protocol has also been employed to evaluate the position
of the triplet and doublet (neutral) states. Throughout all of
the CASPT2 computations, an imaginary level shift27 of 0.2
au has been used to limit the effects of intruder states. All
of the computations were carried out using the MOLCAS 7
program.28 QTAIM analyses have been performed with the
AIMPAC suite of programs29 from the MOLCAS output
wave functions. Care was taken that a full set of critical
points (cp’s) of the density was found at every stationary
point, and bonding information was taken from standard
scalars obtained at relevant (3,-1) cp’s.

Some previous concerns about the applicability of the
QTAIM to excited states30 have now been fully rebutted,31

and recent work32 has shown that the theory may be used
safely in these cases.

3. Results and Discussion

3.1. Geometries. In this subsection, we will describe the
most relevant characteristics of the intermediates involved
in the process. Figure 2 displays the optimized structures
involved in the isomerization mechanism on both the S0 and
S1 PES through the C7-C8 bond twisting, together with some
selected geometrical parameters.

The corresponding values for both Mulliken population
analysis (MPA) and Bader topological charges (BTC) are
presented in Table 1. Although it is well-known that the
former is both method- and basis-set-dependent, most
computational chemists are used to their values. BTCs, on
the other hand, are measurable quantum expectation values,
routinely obtained from X-ray charge density crystal-
lography33 and much more stable versus changes in com-
putational parameters. BTCs are usually larger than those
of the MPA but reflect the actual distribution of electrons in
real space, a particularly important point in excited states,

where charge separations are much more likely to occur. Four
stationary points, three minima (GS, M1, and M2) and a
transition state (TS), have been characterized in the reaction
path. GS, the trans ground state minimum structure, displays
a geometry with some quinonic type character (see Figure
2), but just up to some degree; therefore, a clear character-
ization cannot be established. This behavior points to a
delocalization of the negative charge throughout the structure,
rather than to a concentration on the phenoxy moiety. Indeed,
both MPA and BTC show the negative charge only partially
localized on the phenoxy ring, with a significant amount of
charge located in the carbon chain (see Table 1).

M1, the first minimum located in the S1 reaction path,
displays again a structure that seems to lose, at least partially,
the quinonic-like character. This structure is characterized
by a modification of the bond lengths of the carbon chain.
In particular, an increase in the length of the (isomerizing)
C7-C8 and C1-C7 bonds (yet, in the case of the last one, to
a minor extent) is observed. The region of the keto group
changes noticeably with respect to the GS structure, with
an increase in the bond length of the CdO group and a
decrease of the C8-C9 and C9-C10 bond lengths. MPA and

Figure 2. Most relevant geometrical parameters for the different equilibrium structures located in the S0 and S1 potential energy
surfaces.

Table 1. Negative Charge Distribution (au) Computed
Using Mulliken Population Analysis and Bader Topological
Charges (between brackets) for All of the Equilibrium
Structures Located along the Minimum Energy Path of the
Model Chromophorea

S0 S1

structure qph qchain qph qchain

GS -0.58 (-0.69) -0.42 (-0.30) -0.37 (-0.44) -0.63 (-0.55)
M1 -0.55 (-0.67) -0.45 (-0.32) -0.38 (-0.47) -0.62 (-0.53)
TS -0.45 (-0.58) -0.55 (-0.41) -0.40 (-0.51) -0.60 (-0.48)
M2 -0.10 (-0.26) -0.90 (-0.73) -0.64 (-0.75) -0.36 (-0.24)

a qph stands for the charge located in the phenoxy ring, while
qchain is the charge located in the rest of the molecule.
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BTC values are consistent with a situation where the negative
charge is mainly localized at the carbon chain (see Table
1), with values very similar to those displayed by the bright
(S1) state at the Franck-Condon (FC) structure. TS, the
transition state for the twisting of the C7-C8 bond in S1,
displays similar characteristics to those of the M1 structure,
except for the twisting of the C7-C8 bond and the increase
of its length (see Figure 2). The C1-C7 bond also perceptibly
shortens. MPA and BTC values show a negative charge
distribution similar to the one found in M1. Finally, M2,
the twisted minimum optimized in S1, displays a nearly 90°
twisted structure where the keto oxygen bond length has
shortened and that of the C8-C9 bond has lengthened,
rendering values similar to those found in the GS structure.
MPA and BTC values indicate that part of the negative
charge has moved from the carbon chain to the phenoxy ring
when compared with the previous structures. As a result, it
can be seen that both MPA and BTC render the same
qualitative trend with a gradual partial localization of the
negative charge in the phenoxy ring along the MEP.

3.2. Energies of the States and Minimum Energy
Path. Table 2 shows the ordering of the lowest-lying
electronic states at the FC point, whereas Figure 3 shows
the MEP computed for the S1 twisting process of the C7-C8

bond. The first thing to note is the energetic order of the
different electronic states at the FC point. The lowest-lying

singlet excited state of the anion is not metastable with
respect to the autoionization process at the FC point.

As can be seen in Table 2, the neutral radical (D1) is
energetically less stable (2.79 eV vs 2.54 eV) than the S1 π
f π* lowest-lying singlet state. This result is in line with
the experimental results of Lee et al.,17 where it is shown
that the highest quantum yield is obtained for the reaction
channel associated with the isomerization process. The results
obtained are consistent with a process in which population
of the neutral state would not be possible unless high
excitation energies are used, with the system being excited
either to a different electronic state (higher in energy than
S1, see Table 2) or to a high vibrational state; that is, the
system becomes vibrationally hot in S1. However, due to
the relatively small energetic difference, we cannot rule out
the possibility of regions of the potential energy surface close
to the FC region where the anion becomes a metastable state.
Special caution must be taken when analyzing those
regions,34,35 a problem that is out of the scope of this work
and has previously been addressed using different compu-
tational methods.10,11,16p

Another point is that the computed S0-S1 vertical excita-
tion energy is in line with previous results obtained for the
full protein.12 Despite both calculations cannot be directly
compared due to the differences in the models and level of
theory employed, this result is consistent with the proposal
of Andersen and co-workers,36 who suggested that the role
of the protein is that of shielding the chromophore from the
solvent (that would produce a large shift on the absorption
maximum) and creating an environment similar to that of
the chromophore in vacuo with a small difference in the
absorption color due to the fine-tuning carried out by the
protein. It must be stressed, however, that vertical excitation
energy does not correspond in general to the absorption band
maximum, yet a reasonable degree of agreement can be
usually expected. More accurate comparisons would require
calculation of the vibrational profile of the absorption band.
It is also interesting to note that, for the carboxilate derivative
of a related model of the PYP chromophore, the trans
p-coumaric acid, some popular methods render significant
and unexpected differences,16q pointing out that caution must
be taken with the models and theoretical methods employed.
Moreover, recent computational work has cast some doubt
on the interpretation of photodestruction spectroscopy results
in related systems.37

The following excited state, S2, is of nf π* type like S4,
whereas S3 is again a π f π* state. It is also interesting to
note that both S2 and S4 show a clear multiconfigurational
character, pointing out that only a method able to describe
appropriately this characteristic can render a correct descrip-
tion of these states and their energies. In particular, the use
of single-reference-based methods for the study of these kinds
of states can be problematic. Moreover, the inclusion of
dynamic correlation effects through CASPT2 single-point
calculations alters the order and energy gap among the states
(see Supporting Information), pointing out that the use of
the CASSCF method for the computation of molecular
dynamics must be carefully assessed.

Table 2. Relative Energies (to S0, eV) and Oscillator
Strengths (in parentheses) for the Most Significant
Electronic States at the Franck-Condon Geometry
Computed at the CASPT2/CASSCF/ANO-S Theoretical
Level

electronic state ∆E

S1 (πfπ*) 2.54 (0.928)
S2 (nfπ*) 3.48 (<10-3)
S3 (πfπ*) 3.67 (0.092)
S4 (nfπ*) 3.72 (<10-3)
D1 (πfπ*) 2.79
T1 (πfπ*) 1.83

Figure 3. Graphical representation of the minimum energy
path computed for the twisting of the C7-C8 bond in the
lowest-lying singlet electronic state (S1) at the CASPT2/
CASSCF/ANO-S theoretical level (optimized structures along
the path are indicated). The doublet (D1) and triplet (T1) states
are also included.
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Figure 3 shows a reaction profile in which, after an initial
relaxation from the FC point and formation of the relaxed
planar minimum M1, a small barrier (0.15 eV) must be
surmounted to reach the twisted M2 minimum, which is 0.19
eV more stable than the FC point, nearly degenerate with
the lowest-lying triplet state (T1), and 1.49 eV more stable
than the neutral doublet state (D1). Contrary to the behavior
of D1, T1 is more stable than the lowest-lying singlet state
(see also Table 2) along this reaction profile. As the reaction
path proceeds, the energies of the S1 and T1 states approach
and are almost degenerate in the region close to M2, the
twisted minimum in S1. Indeed, the differences in energy
along the reaction path are virtually negligible soon after
TS (see Figure 3). This fact may have important conse-
quences for the reaction process, particularly under the
experimental conditions used, characterized for the existence
of an excess of energy. For the intersystem crossing (ISC)-
mediated (S1/T1) process to be competitive with the internal
conversion (CI)-mediated (S1/S0) one, this has to happen on
a time scale on the same order as the one assigned for the
S1/S0 nonradiative transition. The possible implications for
the mechanism discussed here rely on the existence of such
a competitive and fast ISC process operating simultaneously
with the S1/S0 nonradiative relaxation. Lee et al.17 give a
time estimate for the latter of about 1 ps. This is not the
usual time scale for an ISC process (with rough estimates38

for an S1/T1 transition in the range 10-6 to 10-11 s) except
for those systems where the spin-orbit coupling (SOC) is
large (like transition metals). However, upon excitation to
higher vibrational energies, the possibility of population of
the T1 state cannot be disregarded. It could be argued that
the main interaction underlying the formation of the triplet
state (T1) after excitation to the first low-lying singlet excited
state (S1), the SOC, is not fast enough to compete with the
nonradiative deactivation process mediated by a conical
intersection. This may initially be thought to be due to the
usually low values of the SOC obtained for polyenes, like
the system studied here, when compared with other systems,
where the SOC is a strong interaction that cannot be
neglected in the study of reactive processes. Were this the
case, the time needed for the transition from the S1 to the T1

state would be very long compared with the fast time scale
proposed for the early events of the trans-cis isomerization
reaction. However, when computing the rate constant for the
ISC process using the Fermi golden rule approach (see eq
1), different factors contribute to the efficiency of ISC. One
is, as already mentioned, the value of the SOC term.

The other one is the density of states, FE. Thus, in order
to determine the possible coexistence of a triplet deactivation
channel, we have to analyze whether in the experimental
conditions a high density of states is available (it is clear
that the number of states that obey the resonance or near
resonance condition will be larger provided that an excess
of energy exists in the system, like the experimental
conditions of Lee et al.17) and also determine the value of
the SOC term. It is in the evaluation of this term that some
care must be taken. As has been recently shown,39 the
vibronic contribution to the SOC (see eq 2) can produce an
important effect (of several orders of magnitude in molecules
of moderate size39) in the nonradiative relaxation mediated
by a S/T crossing. Both aspects, the density of states available
at the experimental conditions and the SOC value including
the first-order vibrational term,

will contribute to increase the value of kiff giving rise to a fast
intersystem crossing process. It is interesting to note that, when
the energetic levels lie close in energy, the overlap between
the vibrational wave functions will be non-negligible, with an
important contribution of the Franck-Condon factors. More-
over, in the region of the MEP where a near energetic
degeneracy between S1 and T1 exists, the molecule is twisted,
and therefore, the out-of-plane deformations will increase the
SOC coupling between πf π* states through the second term
in eq 2. This competitive process could be even more important
inside the protein, where a high FE exists in the region of ISC.
Experimental monitoring of the formation of a putative triplet
species40 would be highly desirable to test the validity and
generality of this proposal, particularly in the protein environ-
ment. However, it has to be stressed that population of the triplet
state would be a process leading to a decrease in the efficiency
of the protein to carry out its sensory role, so the impact of this
putative competitive deactivation channel in the natural pho-
tochemical reaction has to be minimized in favor of the trans-
to-cis isomerization one. This can be accomplished by turning
the region around M2 into a conical intersection seam, as
proposed in ref 6.

3.3. QTAIM Analysis of the Excited States. Table 3
contains the most significant structural indicators for the
isomerizing double bond at all of the significant equilibrium

Table 3. Relevant Structural Information [Eigenvalues of the Hessian of the Density (λ1, λ2, λ3), Ellipticity (ε), Value of the
Density at the Critical Point (Fc), and Value of the Laplacian of the Density at the Critical Point (∇2Fc)] Obtained Using
QTAIM for the Isomerizing Double Bond in All of the Equilibrium Structures Located along the Reaction Path

structure λ1
a λ2

a λ3
a ε Fc

a 32Fc
a

GS -7.51 × 10-1 -5.97 × 10-1 2.01 × 10-1 2.57 × 10-1 3.34 × 10-1 -1.15 × 100

M1 -6.45 × 10-1 -5.40 × 10-1 2.60 × 10-1 1.96 × 10-1 2.99 × 10-1 -9.24 × 10-1

TS -5.65 × 10-1 -5.18 × 10-1 2.93 × 10-1 9.10 × 10-2 2.75 × 10-1 -7.91 × 10-1

M2 -5.58 × 10-1 -5.28 × 10-1 2.84 × 10-1 5.62 × 10-2 2.78 × 10-1 -8.03 × 10-1

a Values are given in au.

kiff )
2π
p ∑

{|f〉}
|〈i|ĤSO′ |f〉|2δ(Ei

0 - Ef
0) (1)

〈i, V|ĤSO′ |f, ν′〉 ) 〈i|ĤSO′ |f〉|q0)0〈ν|ν′〉 +

∑
k

( ∂

∂qk

〈i|ĤSO′ |f〉)q0)0〈ν|qk|ν′〉 + O(|q|2) (2)
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structures located for this process obtained with the QTAIM
method (see the Supporting Information for a brief descrip-
tion of their meaning). As shown in Table 3, the decrease in
the values of the ellipticity (ε) and the density (Fc) at the
bond critical point as well as the negative values of the
laplacian of the density (∇2Fc) at the bond critical point are
consistent with a mechanism in which the covalent C7-C8

bond modifies its character from double-like to single-like
(see Supporting Information). The weakening of the isomer-
izing double bond in S1 is expected to facilitate the trans-
to-cis transformation.

A remarkable result is the appearance of a new ring critical
point in M1 as a consequence of the formation of a H-H
bond. Accordingly, M1 displays the bonding pattern depicted
in Figure 4. The energetic stabilization created by the formation
of this bonding interaction in this planar structure is estimated
to be about 3-4 kcal/mol,41 which is on the same order or
magnitude of the energy stabilization of this minimum compared
to TS and seems to indicate that it is associated with the
existence of a small barrier for the process in vacuo. It is
interesting to note that such a kind of planar structure is not
found in the S1 state of the protein as a consequence of the
steric restrictions existing in the protein binding pocket, which
forces the chromophore to adopt a slightly bandy structure.12

This distortion from planarity in the protein environment will
induce a chromophore structure where the hydrogen atoms
involved in the H-H bond will move further away. As a result,
it is expected that the stabilization generated through this
bonding interaction will at least decrease or even disappear,
and the S1 minimum in the protein (equivalent to M1) can then
become a shallow one. This may ultimately lead to a faster
process due to the decrease (or even disappearance) of the
barrier in the lowest-lying excited state. Such a kind of profile
is also present in other proteins that perform a similar role.23

Thus, the PYP protein not only would act as a shield avoiding
the interaction of the solvent with the chromophore,36 but it
could also modulate the S1 profile, improving the efficiency of
the mechanism when the process takes place with a moderate
excess of energy, which should be the case under natural
conditions.

4. Conclusions

We have analyzed the excited state isomerization process
of a model of the PYP chromophore in vacuo combining
the energetic analysis based on the MEP approach with the
QTAIM theory at the CASPT2/CASSCF multiconfigura-
tional level. We have shown that the isomerization process
through direct twisting of the C7-C8 double bond leads to a
reaction profile with a small barrier in the excited state. This
barrier could in part be originated by the formation of a
prereactive planar intermediate characterized by the existence
of a bonding H-H interaction that contributes to enhancing
its energetic stability. This behavior is not expected to be
present at the same extent in the PYP where the steric
interactions existing in the protein binding pocket will
prevent the chromophore of adopting a planar structure,
pointing to one possible role of the protein in modulating
the efficiency of this reaction. We have also analyzed the
role of the triplet state in the general reactive process. The
possibility of competition between the population of the
triplet state and the trans/cis isomerization process has been
critically discussed, and new experimental studies are sug-
gested. A possible role of the PYP protein in the enhance-
ment of the isomerization process efficiency has also been
proposed. We hope the results outlined will be helpful not
only for a better understanding of the photochemistry of PYP
but also for a general understanding of photochemical
processes in biological photoreceptors.
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5764. The authors wish to thank Prof. M. Merchán and Prof.
M. Olivucci for helpful discussions.

Note Added after ASAP Publication. This article
was released ASAP on September 24, 2009 with minor errors
in the Results and Discussion section. The correct version
was posted on September 29, 2009.

Supporting Information Available: Further details of
the theoretical methods used, geometries, absolute energies,
and MPA and BTA charges for all of the stationary structures
located. This information is available free of charge via the
Internet at http://pubs.acs.org/.

References

(1) Hellingwerf, K. J.; Hendriks, J.; Gensch, T. J. Phys. Chem. A
2003, 107, 1082, and references therein.

(2) Cusanovich, M. A.; Meyer, T. E. Biochemistry 2003, 42, 4759,
and references therein.

(3) Molina, V.; Merchán, M. Proc. Natl. Acad. Sci. U. S. A. 2001,
98, 4299–4304.

(4) Thompson, M. J.; Bashford, D.; Noodleman, L.; Getzoff, E. D.
J. Am. Chem. Soc. 2003, 125, 8186–8194.

(5) Yamada, A.; Ishikura, T.; Yamato, T. Proteins 2004, 55, 1063–
1069.

Figure 4. Plot of the gradient field lines of the electronic
density (F) for the M1 intermediate. The green line is the bond
path of the H-H bonding interaction.

Photochemistry of Photoactive Yellow Protein J. Chem. Theory Comput., Vol. 5, No. 11, 2009 3037



(6) Groenhof, G.; Bouxin-Cademartory, M.; Hess, B.; de Visser,
S. P.; Berendsen, H. J. C.; Olivucci, M.; Mark, A. E.; Robb,
M. A. J. Am. Chem. Soc. 2004, 128, 4228–4233.
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J. Am. Chem. Soc. 2008, 130, 3382–3388.

(24) Coto, P. B.; Strambi, A.; Olivucci, M. Chem. Phys. 2008, 347,
483–491.

(25) El-Gezawy, H.; Rettig, W.; Danel, A.; Jonusauskas, G. J. Phys.
Chem. B 2005, 109, 18699–18705.

(26) Pierloot, K.; Dumez, B.; Widmark, P. O.; Roos, B. O. Theor.
Chim. Acta 1995, 90, 87–114.

(27) Forsberg, N.; Malmqvist, P.-Å. Chem. Phys. Lett. 1997, 274,
196–204.

(28) Karlström, G.; Lindh, R.; Malmqvist, P.-Å.; Roos, B. O.; Ryde,
U.; Veryazov, V.; Widmark, P.-O.; Cossi, M.; Schimmelpfennig,
B.; Neogrady, P.; Seijo, L. Comput. Mater. Sci. 2003, 28, 222–
239.

(29) Biegler-König, F. W.; Bader, R. F. W.; Ting-Hua, T. J. Comput.
Chem. 1982, 3, 317–328.

(30) Cassam-Chenaı̈, P.; Jayatilaka, D. Theor. Chem. Acc. 2001,
105, 213–218.

(31) Popelier, P. L. A. Struct. Bonding (Berlin) 2005, 115, 1–56.

(32) Wang, Y.-G.; Wiberg, K. B.; Werstiuck, N. H. J. Phys. Chem.
A 2007, 111, 3592–3601.

(33) Bader, R. F. W.; Matta, C. F. J. Phys. Chem. A 2004, 108,
8385–8394.

(34) Sommerfeld, T.; Riss, U. V.; Meyer, H.-D.; Cederbaum, L. S.;
Engels, B.; Suter, H. U. J. Phys. B: At., Mol. Opt. Phys. 1998,
31, 4107–4122.

(35) Epifanovski, E.; Polyakov, I.; Grigorenko, B.; Nemukhin, A.;
Krylov, A. I. J. Chem. Theor. Comput. 2009, 5, 1895–1906.
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Abstract: The dissociation energy of molecular hydrogen is determined theoretically with a
careful estimation of error bars by including nonadiabatic, relativistic, and quantum electrody-
namics (QED) corrections. The relativistic and QED corrections were obtained at the adiabatic
level of theory by including all contributions of the order R2 and R3 as well as the major (one-
loop) R4 term, where R is the fine-structure constant. The computed R0, R2, R3, and R4 components
of the dissociation energy of the H2 isotopomer are 36 118.7978(2), -0.5319(3), -0.1948(2),
and -0.0016(8) cm-1, respectively, while their sum amounts to 36 118.0695(10) cm-1, where
the total uncertainty includes the estimated size ((0.0004 cm-1) of the neglected relativistic
nonadiabatic/recoil corrections. The obtained theoretical value of the dissociation energy is in
excellent agreement with the most recent experimental determination 36 118.0696(4) cm-1 [J.
Liu et al. J. Chem. Phys. 2009, 130, 174 306]. This agreement would have been impossible
without inclusion of several subtle QED contributions which have not been considered, thus far,
for molecules. A similarly good agreement is observed for the leading vibrational and rotational
energy differences. For the D2 molecule we observe, however, a small disagreement between
our value 36 748.3633(9) cm-1 and the experimental result 36 748.343(10) cm-1 obtained in a
somewhat older and less precise experiment [Y. P. Zhang et al. Phys. Rev. Lett. 2004, 92,
203003]. The reason of this discrepancy is not known.

1. Introduction

Theoretical determination of the dissociation energy D0 of
the simplest, prototypical chemical bond in the hydrogen
molecule has a long history. It started in 1927, very shortly
after the discovery of quantum mechanics, by the work of

Heitler and London1 who approximately solved the Schrö-
dinger equation for two electrons in the Coulomb field of
two protons and found that this system is stable against the
dissociation to two hydrogen atoms. The approximate
dissociation energy they obtained represented only about 60%
of the observed value, but it could be argued that by virtue
of the variational principle this was only a lower bound and,
consequently, that the new quantum theory satisfactorily
explained the hitherto puzzling stability of the chemical bond
between electrically neutral atoms. A few years later, James
and Coolidge2,3 computed a much better, 13-term wave
function depending explicitly on the interelectron distance
and found that D0 ) 4.454 ( 0.013 eV s a value within
error bars of the experimental value 4.46 ( 0.04 eV available
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at that time4 (obtained from the heat of dissociation) and
within about 0.5% of the present day value of 4.478 eV.
This was an amazing achievement for a computation carried
out and checked by, as the authors of ref. 2 put it, “an
experienced computer”.

When the electronic computers became available Kolos
and Wolniewicz5 extended the work of James and Coolidge
to much longer wave function expansions (up to about 100
terms) and developed methods and codes to account for the
coupling of the electronic and the nuclear motion and for
the effects of relativity. The theoretical dissociation energy
obtained by Kolos and Wolniewicz D0 ) 36 117.4 cm-1 6,7

could be confronted with the most accurate experimental
determination from Herzberg and Monfils amounting to
36 113.6 ( 0.3 cm-1.8 Since, by virtue of the variational
principle, the theoretical result can be viewed as a lower
bound, both of these values can be correct only if the
quantum mechanics fails to describe the dissociation of the
H-H bond with quantitative accuracy. Fortunately, new
experimental determinations from Herzberg9 (36 116.3 cm-1

< D0 < 36 118.3 cm-1) and Stwalley10 (D0 ) 36 118.6 (
0.5 cm-1) resolved this difficulty in favor of theory. This
development demonstrated that the Schrödinger equation
when solved accurately and corrected for small effects of
relativity can predict the molecular energy levels with very
high precision and, therefore, it laid a foundation for the
current faith in the quantitative predictive power of quantum
chemistry.

Further theoretical11-13 and experimental14-16 work has
reduced the discrepancy between theory and experiment to
several hundredths of a cm-1. Very recently Liu et al.17

described a hybrid, experimental-theoretical determination
of D0 based on several transition frequency measurements17-20

and theoretical calculations of the energy levels of the H2
+

ion.21-24 The dissociation energy D0 ) 36 118.06962 cm-1

determined in this way17 has been reported with an uncer-
tainty of (0.00037 cm-1 s almost 2 orders of magnitude
smaller than that of the previous most accurate determination
D0 ) 36 118.062 ( 0.010 cm-1 of Zhang et al.16 The best
available theoretical predictions of 36 118.049 cm-1 from
Kolos and Rychlewski12 and 36 118.069 cm-1 from
Wolniewicz13 are significantly less precise and have been
reported without any error bar estimates. Both of these
predictions involve an incomplete treatment of R3 quantum
electrodynamics (QED) corrections,25 so it is not clear if the
perfect agreement between the experiment and Wolniewicz’s
calculation is not fortuitous. In fact, Wolniewicz has
concluded his paper13 with the remark that the main
uncertainty in his dissociation energy is due to the neglected
QED effects. Specifically, he has neglected the R3 contribu-
tions, resulting from two-photon exchanges between elec-
trons—the so-called Araki-Sucher effect26,27—and used a
simple approximation of the Bethe logarithm,28,29 which was
shown to be rather inaccurate when applied to H2

+.30

In this communication, we present a complete calculation
of the R3 QED contribution to D0 and give an approximate
value of the next R4 term in the fine-structure constant
expansion of D0. We have also recomputed the nonrelativistic
and R2 relativistic parts of D0, paying special attention to an

estimation of the error bars for all evaluated contributions.
We hope that this estimation will enable a more meaningful
comparison of theoretical predictions with the newest
experimental result.17

2. Method

For molecules with light nuclei, the most convenient
theoretical framework for the description of molecular
properties is the expansion in powers of the fine-structure
constant R (in our calculations we assumed that R )
1/137.0359997, cf. ref 31). Specifically, the molecular or
atomic energy levels needed to compute D0 can be obtained
from the expansion:

where E(0) is the nonrelativistic energy, i.e., an eigenvalue
of the Schrödinger equation for the electrons and nuclei (with
the center-of-mass motion separated out), R2E(2) is the
expectation value of the Breit-Pauli Hamiltonian25 with the
nonrelativistic wave function (assuming the molecular center
of mass at rest), R3E(3) is the leading QED correction,25-27

and R4E(4) collects all relativistic and QED corrections
proportional to R4 32,33 (when expressed in atomic units).

2.1. Nonrelativistic Energy. The nonrelativistic approxi-
mation D0

(0) to D0 can be obtained variationally by minimiza-
tion of the expectation value of the complete four-particle
Hamiltonian with an appropriate trial function.33,34 To have
better error control and to generate wave functions and
potentials needed in QED calculations, we adopted, however,
a stepwise approach and computed D0 as the sum:

where D0
BO is the result of standard Born-Oppenheimer

calculation,δD0
ad is theadiabatic(diagonalBorn-Oppenheimer)

correction,36,37 and δD0
na is a (very small) nonadiabatic

correction defined essentially as the difference between D0
(0)

and the sum of D0
BO and δD0

ad.
The Born-Oppenheimer potential V(R) needed in the

computation of D0
BO, δD0

ad, and δD0
na and of the relativistic/

QED corrections was represented in the following form:

where R is the internuclear distance, C6, ..., C26 are van der
Waals coefficients fixing the large R asymptotics of V(R),
and fn(x) ) 1 - e-x(1 + x + x2/2! + · · · + xn/n!) is the
Tang-Toennies damping function.38 The asymptotic coef-
ficients C6, C8, C10, C11, ..., C26 (C7, C9 vanish) were taken
from the work of Mitroy and Ovsiannikov39 with the full
13 digit accuracy (we recomputed the five leading coef-
ficients C6, C8, C10, C11, and C12 obtaining the same results
as the ones reported in ref 39). Accurate values of the
asymptotic Cn coefficients are available also for n > 26,38,39

but we found that their inclusion in the last term of eq 3 did

E ) E(0) + R2E(2) + R3E(3) + R4E(4) + · · · (1)

D0
(0) ) D0

BO + δD0
ad + δD0

na (2)

V(R) ) e-�R2-γR(R-1 + ∑
n)0

16

bnR
n) +

( ∑
n)0

2

anR
n + a3R

5/2)e-2R - ∑
n)6

26

fn(ηR)
Cn

Rn
(3)
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not lead to further improvement of the fit [with the fixed
form of the short-range part of V(R)]. It should be noted
that the values of C24, C25, and C26 reported later by
Ovsiannikov and Mitroy40 with a smaller number of digits
cannot be used in our fit.

The three nonlinear parameters �, γ, η and 19 linear ones
a2, a3, b0, ..., b16 were obtained by least-squares fitting the
right hand side (rhs) of eq 3 to the energies computed by
Sims and Hagstrom41 for 47 internuclear distances R ranging
from 0.4 to 6.0 bohr. In the vicinity of the minimum of the
potential well, these energies have an error on the order of
10 -6 cm-1,41 while for R ) 6.0, where the basis set used
by Sims and Hagstrom is least adequate, the error is smaller
than 2 × 10 -5 cm-1.42 For 27 distances outside the range
covered by Sims and Hagstrom, we used values obtained
by Cencek42 using a 1200-term fully optimized Gaussian
geminal basis set. These values have an error smaller than
2 × 10 -5 cm-1.42 The linear parameters a0, a1 were
constrained by the relations:

required to ensure the right behavior of V(R) at small
distances:

with EHe ) -2.903724377034119 and EH ) -0.5 being
atomic energies of helium and hydrogen (assuming infinite
nuclear mass). The error of our fit is 5 × 10 -5 cm-1 at
the bottom of the potential well and is even smaller at
larger distances. The fit parameters obtained by us are
listed in Table 1. A code generating V(R) is available upon
request.

The dissociation energy D0
BO computed using the analytic

Born-Oppenheimer potential generated in this way is
36 112.59273 cm-1 (using the conversion factor 1 hartree
) 219 474.631 37 cm-131). We estimate that the error of
this value is 0.00010 cm-1. Since the potential points have
substantially smaller inaccuracies and since the numerical
integration of the radial Schrödinger equation with an analytic
potential does not introduce a significant error, most of the
uncertainty of D0

BO results from the fitting procedure.

Accurate values of the adiabatic δD0
ad ) 5.77111 cm-1

and the nonadiabatic δD0
na ) 0.43391 cm-1 corrections to

D0
BO were recently computed by two of us43 using a

perturbation method formulated in ref 44 (the proton mass
mp ) 1 836.15267247 me was assumed31 in obtaining these
numbers). The computation of the adiabatic correction
reported in refs 43 and 44 was carried out using a novel,
very stable numerical procedure,44 avoiding entirely the
cumbersome differentiation of the electronic wave function.
With basis sets ranging from 600 to 1800 fully optimized
Gaussian geminals, the accuracy of at least five significant
figures for δD0

ad was achieved. Therefore, we can assume
that the error of δD0

ad is smaller than 0.00010 cm-1. Also all
five figures of the nonadiabatic correction δD0

na appear to be
converged with regard to the extension of the basis set.
However, the fourth- and higher-order effects neglected in
the perturbation procedure of ref 43 may be of the order of
0.0001-0.0002 cm-1. In fact, the value δD0

na ) 0.43391 cm-1

differs from the earlier, methodologically very different,
calculation of Wolniewicz by 0.0002 cm-1. Therefore, we
assign the uncertainty of 0.00020 cm-1 to the value δD0

na )
0.43391 cm-1.

Adding D0
BO, δD0

ad, and δD0
na, we find that the nonrelativ-

istic dissociation energy amounts to D0
(0) ) 36 118.7978(2)

cm-1, where the uncertainty (given in the parentheses as the
error in the last digit) is calculated by quadratically adding
the errors of summed contributions. Our result for D0

(0) is
consistent with the value 36 118.79774(1) cm-1 obtained very
recently45 using 10 000 extensively optimized Gaussians (and
more than a year of massively parallel computing). The
accuracy achieved in ref 45, however impressive, is not
relevant for our purposes since the experimental uncertainty
of D0 and, even more so, the uncertainty of the relativistic
and QED contributions to D0 are 2 orders of magnitude larger
than the error of the large-scale variational calculations of
ref 45.

2.2. Lowest-Order Relativistic Contribution. The low-
est-order, R2 relativistic correction to the nonrelativistic
energy is expressed by the expectation value of the Breit-Pauli
Hamiltonian46,47 over the nonrelativistic wave function ψ.
When the electrons and nuclei are in their singlet states and
when the terms containing the proton charge radius and the
so-called recoil terms,48,49 (of the order of (me/mp)nR2, n )
1, 2, 3) are neglected, this correction is given by the sum of
four terms:

referred to successively as the mass-velocity, the one- and
two-electron Darwin, and the Breit contributions (the contact
spin-spin interaction is included in the two-electron Darwin
term). In eq 6, pi is the momentum operator for the ith
electron, r1a is the vector pointing from nucleus a to electron
1, r12 is the vector pointing from electron 2 to electron 1,
and δ(r) is the three-dimensional Dirac distribution. We made
use of the fact that the wave function ψ employed to compute
the expectation values is symmetric in the spatial electronic

Table 1. Parameters Determining the Analytic Form, eq 3,
of the Born-Oppenheimer Potential for H2

a

b0 -246.146616782077 b11 19.870410304616
b1 -122.890180187858 b12 -7.564322211157
b2 -162.863251799668 b13 2.089842241100
b3 -67.028576007896 b14 -0.400842621727
b4 -58.308248409124 b15 0.047594467110
b5 3.483076932756 b16 -0.002719925287
b6 -52.461380739836 � 0.584358199608
b7 59.254861689279 γ 3.338428574260
b8 -70.780756953312 η 2.561607545
b9 59.254901002422 a2 5.258436256979
b10 -39.529747868821 a3 -1.499067595467

a All parameters are in atomic units.

a0 ) EHe - 2EH - b0 + γ

a1 ) 2a0 + γb0 - b1 + � - γ2

2
+ ∑

n)6

26 Cnη
n+1

(n + 1)!
(4)

V(R) ) 1
R

+ EHe - 2EH + O(R2) (5)

E(2) ) -1
4

〈p1
4〉 + 2π〈δ(r1a)〉 + π〈δ(r12)〉 -

1
2〈p1

1
r12

p2 + p1 · r12
1

r12
3

r12 · p2〉 (6)
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and nuclear coordinates. When computing the expectation
values in eq 6, we used the adiabatic function ψad )
�(R)ψel(r1, r2; R), where ψel(r1, r2; R) is the electronic wave
function depending parametrically on the vector R joining
the nuclei, and �(R) is the solution of the radial Schrödinger
equation with the potential V(R) plus the adiabatic correction
to V(R).44 With this approximation for ψ, the expectation
values in eq 6 are obtained by averaging the R dependent
electronic expectation values, e.g., 2π〈ψel|δ(r1a)|ψel〉 ≡ D1(R)
with the weight function given by the square of �(R). This
adiabatic procedure is justified since, as discussed in Section
3, the neglected cross relativistic-nonadiabatic terms can
be expected to be of the order of (me/mp)R2, and therefore,
3 orders of magnitude smaller than the relativistic correction
of eq 6. The R dependent electronic expectation values
corresponding to the four successive terms in eq 6 will be
denoted by us as P(R), D1(R), D2(R), and B(R). These radial
functions were computed by Wolniewicz50 using the basis
of Kolos and Wolniewicz.51 They were tabulated50 for 55
internuclear distances ranging from R ) 0.2 to 12.0 bohr in
the form of functions εk(R) related to ours by ε1(R) ) P(R),
ε2 ) B(R), ε4(R) ) D1(R) - D2(R), ε5(R) ) 2D2(R).

We recomputed these radial functions using extensively
optimized sets of Gaussian geminals and paying special
attention52 to larger internuclear separations. We also
computed the constants determining the asymptotic behavior
of P(R), D1(R), and B(R) at large R. The first three constants
(at 1/R6, 1/R8, and 1/R10), fixing P(R) and D1(R) at large R
were already reported in ref 52 [D2(R) vanishes exponentially
at large R].

For the Breit correction B(R), we considered only the first
two terms in the asymptotic expansion B(R) ) W4R-4 +
W6R-6 + · · · . The constants W4 and W6 are given by the
expressions:53,54

and

where φ0 is the product of atomic wave functions, R0 ) (Ha

+ Hb - Ea - Eb)-1 is the reduced resolvent for two
noninteracting hydrogen atoms, z1a, z2b, pz1, and pz2 are the
z components of the vectors r1a, r2b, p1, and p2, and finally,
(Q2

0)1a ) 1/2(3z1a
2 - r1a

2 ) is the quadrupole moment operator.
We computed W4 and W6 using the spd part of the Dunning’s
one-electron Gaussian basis set of the sextuple-	 quality with
double augmentation, d-aug-cc-pV6Z.55 The atomic orbitals
and all the necessary integrals were obtained using the
DALTON suite of codes.56 The values of both coefficients were
calculated using the sum-over-states technique with a code
written especially for this purpose. All excited states resulting
form the chosen basis set were included in the summation
defining R0. We found that W4 ) 0.4627(7) and W6 )
3.995(7) atomic units. The proposed error bars were deter-
mined by observing changes of the W4 and W6 values

obtained with d-aug-cc-pVXZ bases, X ) T, Q, 5, and 6,
and by making a comparison with the results computed using
the alternative form of eqs 7 and 8 in which the linear
momentum operators are replaced by operators corresponding
to the Cartesian coordinates.53,54

Except for large distances, R > 10 bohr, our values of P(R)
and D1(R) agree very well with those of Wolniewicz, so we
used Wolniewicz’s values (available for a larger number of
distances) in computing the averages 〈P(R)〉 and 〈D1(R)〉. For
R > 10.0 bohr, we used our values, which appear to agree
somewhat better with the exact asymptotics. For R > 12.0,
we applied the three-term (undamped) asymptotic expansion
with the constants (at 1/R6, 1/R8, and 1/R10) published earlier
by the three of us.52 By observing the basis set convergence
patterns and by comparing our values of P(R) and D1(R)
with those published by Wolniewicz, we estimate that the
computed dissociation energy contributions due to the
mass-velocity and one-electron Darwin terms, amounting
to 4.4273 and -4.9082 cm-1, respectively, have the uncer-
tainty of 0.0002 cm-1 each.

For the two-electron Darwin term, we found that our
values of D2(R), computed with a basis set of 1 200 fully
optimized Gaussian geminals, are slightly different than those
of Wolniewicz.50 The observed basis set convergence pattern
and the independent calculations of Cencek42 suggest that
our values, listed in Table 2, are more accurate (especially
at smaller values of R), and we used them to calculate

W4 ) -2〈
0|z1az2bR0pz1pz2|
0〉 (7)

W6 ) -9〈
0|(Q2
0)1az2bR0(z1apz1 + pz1z1a)pz2|
0〉

-12
5

〈
0|z1az2bR0[2r1a
2 pz1 - z1a(r1a ·p1)]pz2|
0〉

(8)

Table 2. Electronic Bethe Logarithm, ln Kel(R), and the
Electronic Expectation Values of δ(ria), δ(r12), and P(r12

-3) for
H2 as Functions of Internuclear Separation, Ra

R ln Kel δ(ria) δ(r12) P(r12
-3)

0.0 4.37016 3.62086 0.10635 0.98927
0.1 3.765 2.88530 0.10157 0.98082
0.2 3.526 2.28447 0.09137 0.96236
0.4 3.279 1.50399 0.06887 0.88474
0.6 3.1596 1.06778 0.05076 0.77747
0.8 3.09331 0.80828 0.03767 0.66964
1.0 3.05490 0.64410 0.02835 0.57115
1.1 3.04206 0.58427 0.02473 0.52685
1.2 3.03215 0.53496 0.02164 0.48593
1.3 3.02448 0.49397 0.01901 0.44828
1.4 3.01855 0.45967 0.01674 0.41430
1.5 3.01396 0.43079 0.01479 0.38169
1.6 3.01040 0.40636 0.01309 0.35199
1.7 3.00763 0.38565 0.01161 0.32500
1.8 3.00547 0.36805 0.01032 0.30005
1.9 3.00377 0.35309 0.00918 0.27685
2.0 3.00240 0.34040 0.00817 0.25544
2.2 3.00034 0.32062 0.00649 0.21731
2.4 2.99878 0.30686 0.00514 0.18412
2.6 2.99742 0.29779 0.00406 0.15552
2.8 2.99610 0.29243 0.00319 0.13036
3.0 2.99476 0.29000 0.00247 0.10847
3.5 2.99137 0.29236 0.00124 0.06613
4.0 2.98848 0.29997 0.00057 0.03881
4.5 2.98650 0.30722 0.00024 0.02277
5.0 2.98534 0.31220 0.00010 0.01390
5.5 2.98473 0.31510 0.00004 0.00903
6.0 2.98442 0.31667 0.00001 0.00625
7.0 2.98420 0.31788 0.00000 0.00347
8.0 2.98415 0.31819 0.00000 0.00219
10.0 2.98413 0.31829 0.00000 0.00107
12.0 2.98413 0.31831 0.00000 0.00061

a All values in atomic units.
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〈D2(R)〉. We estimate that the dissociation energy contribution
-R2〈D2(R)〉 ) -0.5932 cm-1 computed using these values
has an uncertainty of 0.0001 cm-1.

For R e 5.0 bohr, our values of B(R) agree very well with
those of Wolniewicz, and we used the latter in calculating
B(R). For R > 5.0 bohr, however, the Wolniewicz’s values
appear to be less accurate, deviating significantly from the
correct asymptotics at large R. Therefore, for R > 5.0 bohr
we used the analytic fit:

with parameters b ) 1.351860240, A0 ) 2.077615180, A1

) -2.519175275, A2 ) 0.577315005, A3 ) -0.051870326,
and A4 ) 0.001715821, all in atomic units, adjusted to values
computed by us for R > 5.0 bohr. We estimate that the
resulting contribution to the dissociation energy -R2〈B(R)〉
) 0.5422 cm-1 has an uncertainty of 0.0001 cm-1.

2.3. QED Contribution. The lowest-order QED correc-
tion, R3E(3), to the energy of an atomic or molecular bound
state is given by25-27

where the expectation values are computed with the eigen-
function ψ of the nonrelativistic Hamiltonian H. P(r12

-3) is
the distribution defined in atomic units by

where θ(x) is the Heaviside step function, and γ is the
Euler-Mascheroni constant. The so-called Bethe logarithm,
ln K, in eq 10 is defined as

where j ) -p1/me - p2/me + pa/mp + pb/mp is the electric
current operator for the system (pa and pb are proton
momenta), and Ry∞ ) R2mec2/2 ) 1/2 hartree is the Rydberg
constant. The expectation values 〈δ(r1a)〉 and 〈δ(r12)〉 are
already known from the calculation of the R2 contribution,
so the only new quantities to be calculated are the Bethe
logarithm ln K and the so-called Araki-Sucher term s the
last on the rhs of eq 10.

The evaluation of eq 12 for the four-body system using
an accurate nonadiabatic wave function ψ appears to be very
demanding computationally and was not attempted. Instead
we used an adiabatic approximation to ln K defined as

where D1(R) is the already computed electronic expectation
value of 2πδ(r1a), and the averaging over R is carried out
with the adiabatic nuclear wave function �(R). The R
dependent electronic Bethe logarithm, ln Kel(R), appearing
in eq 13, is defined exactly by eq 12 but with ψ replaced by
the electronic wave function ψel(r1, r2; R), H by the electronic
Hamiltonian Hel, E(0) by the Born-Oppenheimer energy
-2Ry∞ + V(R), and j by the total electronic momentum
operator p1 + p2. Note that after these substitutions, the
denominator in eq 12 becomes equal to 4D1(R).

One can ask how well does this simple adiabatic ap-
proximation for ln K work? To answer this question we used
eq 13 to compute ln Kad for the H2

+ ion using the values of
ln Kel(R) reported in ref 30 (note that the definition of ln K
adopted in this reference differs from ours by ln 2). The
obtained adiabatic value ln Kad ) 3.01276 agrees very well
with the result ln K ) 3.01225 of the complete nonadiabatic
calculation of Korobov.21 In fact, the adiabatic value
(obtained with the real electron mass me) should be corrected
by ln (µ/me), where µ ) me(1 + me/mp)-1 is the reduced
electron mass (see ref 25, p. 101). With this correction, the
adiabatic value, equal now to 3.01222, differs only in 1 part
per 105 from the result of Korobov’s calculation. Similarly
excellent agreement is observed for the excited vibrational
levels. Since using this reduced electron mass correction
gives an energy effect of the order of (me/mp)R3, much
smaller than the neglected relativistic recoil effects, we did
not include this correction in our H2 calculations.

To compute ln Kel(R), we followed closely the technique
described in refs 57-59. The present work is the first
molecular application of this technique and probably the first
calculation of the Bethe logarithm for a molecule other then
H2

+ and HD+. The method employed by us is based on the
integral representation of ln K introduced by Schwartz60 and
involves essentially an integration over the photon momenta
k. Using large Gaussian geminal bases fully optimized at
each value of R and k (by minimizing the relevant Hylleraas-
type functionals) allows for a very efficient modeling of
perturbed wave functions at different k and R dependent
length scales. The mathematical completeness of Gaussian
geminal bases for functions of Σ and Π symmetries,
appearing in our calculations, is guaranteed by theorems
proved in refs 61, 62. By inspecting the basis convergence
pattern, we found that the values of ln Kel(R), obtained with
3000-term geminal bases, and listed in Table 2, may be
inaccurate only at the last figure given in this table. It may
be of some interest to note that our values of ln Kel(R) agree
rather well with the values one can obtain using approximate
models proposed by Garcia28 and Bishop and Cheung29 and
used by Wolniewicz.13 In fact, the Garcia model works
somewhat better underestimating ln Kel(R) by 2% at R ) 1
bohr and even less for larger distances. The model of Bishop
and Cheung overestimates ln Kel(R) by 4% at R ) 1 bohr,
by 2% at the minimum of the potential well, and by less
than that at larger internuclear separations. Note, however,
that the good performance of these models does not hold
generally, since they do not work so well for H2

+.30

We obtained a very accurate analytic fit of ln Kel(R)
interpolating between the atomic hydrogen, ln KH, and

B(R) ) e-bR(A0 + A1R + A2R
2 + A3R

3 + A4R
4) +

W4

R4
+

W6

R6
(9)

E(3) ) 16
3 (19

30
- 2 ln R - ln K)〈δ(r1a)〉 +

(164
15

+ 14
3

ln R)〈δ(r12)〉 -
7

6π
〈P(r12

-3)〉 (10)

〈
1|P(r12
-3)
2〉 ) lim

af0
[〈
1|θ(r12 - a)r12

-3
2〉 +

4π(γ + ln a)〈
1|δ(r12)
2〉] (11)

ln K )
〈ψ|j(H - E(0)) ln [(H - E(0))/Ry∞] jψ〉

〈ψ|j(H - E(0)) jψ〉
(12)

ln Kad )
〈ln Kel (R)D1(R)〉

〈D1(R)〉 (13)
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helium, ln KHe, values and exhibiting the correct L6/R6 fall
off at large R. The asymptotic constant L6 was calculated
independently from appropriate perturbation theory expres-
sions using the Slater basis set. The specific form of the fit
function is

The parameters of the fit are given in Table 3. For R > 1
bohr, the error of this fit is of the order of 10-4 (at few points
in the vicinity of R ) 3 bohr it reaches 4 × 10-4), but using
the fit function in evaluating the formula (13) leads to errors
much smaller than 0.0001.

The value of ln Kad, found using eq 14 and our values of
D1(R), amounts to 3.0188 and has an uncertainty smaller than
0.0001. Using this value, we can compute the dissociation
energy contribution from the first term in eq 10, referred to
as the one-electron Lamb shift. This term, dominating the
total R3 contribution, is equal to -0.2241 cm-1, and we
estimate its uncertainty as 0.0001 cm-1. It is worthwhile to
note that using the atomic hydrogen value of ln K, which is
a natural and inexpensive approximation, one obtains -0.2277
cm-1 instead of -0.2241 cm-1, i.e., a value which is not
sufficiently accurate for our purpose. Thus, including the
correct R dependence of the electronic Bethe logarithm is
essential for a meaningful comparison with high-precision
experimental data. The second term in eq 10, which we refer
to as the two-electron Lamb shift, gives only 0.0166 cm-1

with an uncertainty smaller than 0.0001 cm-1.
The Araki-Sucher term, the last in eq 10, was also

obtained in the adiabatic approximation by computing the
R-dependent electronic expectation value A(R) ) -(7/
6π)〈ψel|P(r12

-3) ψel〉 and subsequently averaging A(R) with the
square of the adiabatic nuclear wave function �(R). The
numerical calculation was performed using Gaussian geminal
basis. The needed matrix elements of the distribution P(r12

-3)
between Gaussian geminal functions located at points P and
T in the bra and R and Q in the ket:

were obtained from the formula:

where

and

The function g(x) appearing in eq 16 is defined as an integral
involving the usual Boys function F0(x) ) (π/x)½ erf(�x)/2:

To compute g(x) we used the following expansions:

used, respectively, for small and medium and for large values
of the argument x. To independently verify our calculations
we computed 〈ψel|P(r12

-3) ψel〉 using also the integral transform
method of reference 63 obtaining the same results at basis
set convergence. The values of 〈ψel|P(r12

-3) ψel〉 computed with
an extensively optimized 1200-term explicitly correlated
Gaussian basis set are given in Table 2. We estimate that
their accuracy is better than one unit in the last digit shown
in the table.

The integral 〈ψel|P(r12
-3) ψel〉 exhibits a slow R-3 decay at

large R. To compute it for values of R larger than 12.0 bohr,
we used its asymptotic expansion:

Using the values given in Table 2 and the asymptotic
formula (eq 23), we found that the Araki-Sucher contribu-
tion to the dissociation energy -R3〈A(R)〉 amounts to 0.0127
cm-1 with an uncertainty of one unit at the last digit. This
contribution has not been computed before for H2. It should
be noted that in his calculations Wolniewicz50 neglected also
the contribution from the first part (164/15) 〈δ(r12)〉 of the
two-electron Lamb shift, amounting to -0.01457 cm-1.

Calculation of the complete R4 contribution to the dis-
sociation energy is a very complex task32,33 and could not
be carried out for the purpose of this investigation. It is well-

Table 3. Parameters Determining the Analytic Form, eq
14, of the Bethe Logarithm, ln Kel(R)a

ln KHe 4.370160222
ln KH 2.984128555
L6 2.082773197
A1 -2.296997851
A2 2.791145918
A3 -1.589533050
A4 0.408542881
b 2.292743496

a All parameters are in atomic units.

ln Kel(R) ) ln KH + e-bR(ln KHe - ln KH + A1R +

A2R
2 + A3R

3 + A4R
4) +

f6(R)L6

R6
(14)

I ) lim
λf0

∫ exp(-a1r1P
2 - b1r2T

2 - c1r12
2 )[θ(r12 - λ)r12

-3 +

4π(γ + ln λ)δ(r12)] exp(-a2r1R
2 - b2r2Q

2 - c2r12
2 )dr1dr2

(15)

I ) W1W2
2π5/2

(a + b)3/2
exp[- ab

a + b
(F-H)2] ×

[γ - ln( 
a + b) + g(a2b2(F-H)2

(a + b) )] (16)

a ) a1 + a2 b ) b1 + b2 c ) c1 + c2

 ) ab + bc + ca (17)

F )
a1P + a2R

a1 + a2
W1 ) exp[- a1a2

a1 + a2
(P-R)2]

(18)

H )
b1T + b2Q

b1 + b2
W2 ) exp[- b1b2

b1 + b2
(T-Q)2]

(19)

g(x) ) ∫0

x 1
t
[etF0(t) - 1]dt (20)

g(x) ) ∑
k)1

n
2k

(2k + 1)!!k
xk + O(xn+1) (21)

g(x) )
√πex

2x3/2 ∑
k)0

n
(2k + 1)!!

2k
x-k + O(x-(n+1)) (22)

〈ψel|P(r12
-3)ψel〉 )

1

R3
+ 6

R5
+ 75

R7
+ O(R-8) (23)
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known,33 however, that this R4 contribution is dominated
by the one-loop term given by

The corresponding correction to the dissociation energy
is -0.0016 cm-1, and we estimate that it differs from the
exact value of the complete R4E(4) contribution by less than
50%. We also verified that the R4, R5, and higher-order QED
corrections due to retardation and taken into account by the
Casimir-Polder formula64 are smaller than 0.0001 cm-1, i.e.,
are well within the error bars assumed for the complete R4E(4)

contribution.

3. Results and Discussion

Dissociation energies for the H2 and D2 molecules are
presented in Table 4 together with all components computed
by us. The experimental dissociation energies shown for
comparison are already corrected for the effects of hyperfine
interactions, i.e., the true energies of atoms into which the
molecule dissociate are replaced by the center of gravity of
the hyperfine structure of the 1 2S1/2 atomic states. This means
that in the case of H2 we must not subtract the 2 × 0.0355
cm-1 correction corresponding to the difference between this
center of gravity and the F ) 0 hyperfine level of hydrogen
atom.

The error bars of all computed components were discussed
in Section 2. Here we still have to estimate the relativistic

nonadiabatic/recoil corrections that have not been computed.
Within the perturbation formalism of ref 44, the leading
nonadiabatic contribution to each of the four terms in eq 6
is given by the expression:

where W stands for p1
4/4, 2πδ(r1a), πδ(r12) or for the Breit

operator,

Hel is the electronic Hamiltonian, Eel is the eigenvalue of
Hel corresponding to the wave function ψel, R is the vector
joining the nuclei, and the prime indicates the orthogonal-
ization to ψel. The term involving (p1 + p2)2 can be obtained
by averaging the R dependent function:

with 4πR2�2(R). The bracket 〈 · · · 〉el denotes the integration
over electronic coordinates only. Since the integral in eq 27
is mass independent the corresponding contribution to the
energy is clearly of the order of R2me/mp. The term involving
∇R

2 can also be written in terms of mass independent radial
functions. To see that we note that this term can be expressed
as the sum of two terms:

The first one is explicitly in the form of an average of a
mass independent radial function and is clearly of the order
of R2me/mp. Performing integration by parts the mass
dependent gradient of � in the second term can be eliminated,
and this term can be written as an average of the radial
function:

proportional to 1/mp. This term is, thus, also of the order of
R2me/mp.

Since all relativistic nonadiabatic/recoil terms are of the
order of R2me/mp, we decided to estimate their magnitude
by scaling the total R2 correction by the factor me/mp. We
view this estimate as a conservative one since for separated
hydrogenatomstheR2me/mpcontributionstothemass-velocity,
Darwin, and Breit terms (equal to 5R2me/mp, -3R2me/mp, and
-2R2me/mp) add up exactly to zero, and this cancellation
must persist to a significant degree when the atoms are
bound. The resulting estimate of the total relativistic nona-
diabatic/recoil correction is ( 0.0000(4) and gives the second
largest (after the R4 term) contribution to the error budget

Table 4. Dissociation Energies for H2 and D2 (in cm-1)
Compared with Experimental Data

H2 D2

R0 Born-Oppenheimer 36112.5927(1) 36746.1623(1)
adiabatic 5.7711(1) 2.7725(1)
nonadiabatic 0.4339(2) 0.1563(2)
total R0 36118.7978(2) 36749.0910(2)

R2 mass-velocity 4.4273(2) 4.5125(2)
one-el. Darwin -4.9082(2) -4.9873(2)
two-el. Darwin -0.5932(1) -0.5993(1)
Breit 0.5422(1) 0.5465(1)
total R2 -0.5319(3) -0.5276(3)

R2me/mp estimate 0.0000(4) 0.0000(2)

R3 one-el. Lamb shift -0.2241(1) -0.2278(1)
two-el. Lamb shift 0.0166(1) 0.0167(1)
Araki-Sucher 0.0127(1) 0.0128(1)
total R3 -0.1948(2) -0.1983(2)

R3me/mp estimate 0.0000(2) 0.0000(1)

R4 one-loop term -0.0016(8) -0.0016(8)

total theory 36 118.0695(10) 36 748.3633(9)a

expt. ref 15 36 118.06(4) 36 748.32(7)
expt. ref 16 36 118.062(10)b 36 748.343(10)
expt. ref 17 36 118.0696(4)

a This value includes the -0.0002 cm-1 correction for the finite
size of the deuteron (the charge radius of 2.14 fm was assumed).
The corresponding correction for the H2 molecule is smaller than
0.0001 cm-1 and can be neglected for our purposes. b In the
footnote to Table III the authors of ref 16 report also the value 36
118.073(4) cm-1 contingent on the assumption that a particular
resonance is a bound state and not a quasi-bound, above
threshold state.

E1-loop
(4) ) 4π(427

96
- 2 ln 2)〈δ(r1a)〉 (24)

2〈ψel�|W
1

(Eel - Hel)′
Hn|ψel�〉 (25)

Hn ) - 1
mp

∇R
2 + 1

4mp
(p1 + p2)

2 (26)

1
2mp

〈ψel|W 1
(Eel - Hel)′

(p1 + p2)
2|ψel〉

el
(27)

- 2
mp

∫ �2(R)〈ψel|W 1
(Eel - Hel)′ |∇R

2 ψel〉
el
d3R

- 4
mp

〈ψel�|W 1
(Eel - Hel)′ |∇Rψel∇R�〉

(28)

2
mp

〈∇Rψel|W
1

(Eel - Hel)′
|∇Rψel〉el +

2
mp

〈ψel|∇RW
1

(Eel - Hel)′
|∇Rψel〉el (29)
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of our calculation. We applied the same scaling procedure
to the QED contribution of the order R3me/mp.

The results of Table 4 show that the dissociation energy
of H2 computed by us, amounting to 36 118.0695(10)
cm-1, is not only within the rather wide error bars of the
experimental determinations from the Eyler group15,16 but
agrees impresively well with the very precise hybrid,
experimental-theoretical value of 36 118.0696(4) cm-1

determined recently by Liu et al.17 The difference between
the experiment and our theoretical prediction is only 1
unit at the ninth decimal place. It should be emphasized
that the theoretical input used in ref 17 can be viewed as
very reliable (it contains data from extremely high-
accuracy calculations for the H2

+ ion)21-23 and is totally
independent of the results of present calculations. The fact
that the experimental value lies rather close to the center
of the energy range determined by our error bars may not
be accidental. We believe that as a result of the cancel-
lation of terms (complete at the separated atoms limit),
the actual value of the R2me/mp contribution is smaller
than our estimate, and that our estimate of the uncertainty
of the R4 contribution is very conservative. Before the R4

contribution and the relativistic nonadiabatic/recoil terms
are accurately calculated it will be very difficult to further
reduce the uncertainty of the theoretical value of the
dissociation energy. It may be interesting to observe that
the achieved agreement with experiment would have been
impossible without the inclusion of the Araki-Sucher
term, the radial dependence of the electronic Bethe
logarithm, and the one-loop R4 contribution.

The dissociation energy for D2 was computed using the
same method as for H2 and the same approach to estimate
the R2me/md and R3me/md terms (we assumed that md )
3 670.4829654 me).

42 These terms are smaller for D2, so in
this case, 90% of the error budget comes from the uncertainty
in the value of the R4 contributions other than the one-loop
term included in our calculations. For D2, the agreement with
the most recent experimental value16 is not satisfactory
despite the large experimental uncertainty (25 times larger
than for H2). The observed discrepancy is, however, only
2σ (experimental). A more precise experiment should be
possible now and could shed some light on the reason of
this small discrepancy.

To demonstrate better the level of accuracy of our
calculations, we also computed the energy differences
between the ground-state energy of H2 and energies of the
first rotationally and vibrationally excited states. These
energies are shown in Table 5 and compared with the
experimental results. Both the theoretical and experimental
energies of the J ) 1 state refer to the center of gravity of
the hyperfine structure, so we did not have to consider nuclear
spin interactions in computing the rotational (ortho-para)
energy difference.

In computing small energy differences, there is a signifi-
cant cancellation of errors, so the error bars for some
contributions are smaller than for the dissociation energy.
These error bars were estimated by performing computations
with several reasonable approximations to the radial functions
[like V(R), D1(R), or D2(R)] and observing the resulting

scatter of energy differences. We assumed that the error of
the nonadiabatic contribution is twice as large as the error
of the adiabatic contribution, as suggested by the observed
ratio of uncertainties for the individual energy levels.

The inspection of the last two rows of Table 5 shows that
the theoretical and experimental values of the ortho-para
energy gap differ only by 0.00004 cm-1, which is much less
than the error of either the theoretical and experimental
determinations. This excellent agreement is very gratifying
since the ortho-para energy difference was employed in ref
17 to obtain the most precise experimental value of the
dissociation energy to date.

The results presented in Table 5 show also an excellent
agreement (up to seventh significant digit) between the
theoretical and experimental vibrational energy difference.
The experimental value, which has a very small uncertainty
of 0.0003 cm-1, differs only by 0.0001 cm-1 from the
theoretical result and lies well within the error bars of the
latter. It appears that the new evaluation of experimental data
reported in ref 65 leads indeed to a much more accurate result
than the older value measured by Dabrowski,66 amounting
to 4 161.14 cm-1 and lying about 30σ (theoretical) off our
result.

Acknowledgment. The authors thank W. Cencek and
L. Wolniewicz for making available their unpublished results.

Note Added after ASAP Publication. This paper was
published ASAP on September 30, 2009. A correction was
made in the Method section to clarify calculation procedures,
and a portion of eq 16 was corrected as well. The revised
paper was reposted on October 1, 2009. Additional correc-
tions were made referring to equation 3 instead of equation
6 and the journal title for reference 57 corrected. The updated
version was reposted on October 7, 2009.

Table 5. The Energy Differences (in cm-1) between the
Ground-State Energy of H2 and Energies of the First
Rotationally and Vibrationally Excited States

J ) 0f1 v ) 0f1

R0 Born-Oppenheimer 118.55558(2) 4 163.4035(1)
adiabatic -0.06365(4) -1.4029(1)
nonadiabatic -0.00667(8) -0.8365(2)
total R0 118.48526(9) 4 161.1641(2)

R2 mass-velocity 0.02713(4) 0.5341(2)
one-el. Darwin -0.02383(4) -0.4994(2)
two-el. Darwin -0.00160(2) -0.0391(1)
Breit 0.00088(2) 0.0279(1)
total R2 0.00258(6) 0.0235(3)

R3 one-el. Lamb shift -0.00109(2) -0.0231(1)
two-el. Lamb shift 0.00004(1) 0.0011(1)
Araki-Sucher 0.00002(1) 0.0007(1)
total R3 -0.00103(2) -0.0213(2)

R4 one-loop term -0.00001(1) -0.0002(2)

total theory 118.48680(11) 4 161.1661(5)

experiment 118.48684(10)a 4 161.1660(3)b

a Ref 18. b Ref 65.
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Appendix

A calculation of the complete R2 contribution to the
ground-state energy of H2 without the adiabatic approxima-
tion, i.e., including the relativistic nonadiabatic/recoil effects,
has already been presented in the literature65 and we made
an effort to use the results of ref 65 to extract the magnitude
of the R2me/mp contribution to the dissociation energy. This
was not an easy task since the authors of ref 65 included
partly the R3 QED contribution (by using the anomalous
magnetic moment of electron in their R2 Hamiltonian) and
because they provided two values of their relativistic energy
differing by 0.0083 cm-1: one obtained as the sum of the
mass-velocity, Darwin, Breit and spin-spin contributions
from their table 3 and the other which could be calculated
as the difference between the 5th and 2nd column in their
table 2.

We were able to eliminate the R3 contributions from
their Darwin energies, and after subtracting the correct
atomic values, we found that their mass-velocity, one-
electron Darwin, two-electron Darwin, and Breit contribu-
tions to the dissociation energy differ from ours by
-0.0030, -0.0032, -0.0043, and 0.0020 cm-1. The sum
of these four contributions amounts to -0.0085 cm-1. This
value is by an order of magnitude larger than our estimate
of the R2me/mp contribution. If we added this additional
-0.0085 cm-1 to our dissociation energy, the disagreement
with experiment would increase to 9σ. However, the total
relativistic energy from their table 2, after eliminating the
R3 terms (using results from their table 3), differs from
our R2 contribution by only -0.0002 cm-1. This magnitude
of the R2me/mp effect is within our error bars and including
it would not affect the comparison with the experimental
results. For the reasons discussed above, we did not use
the results of ref 65 in our theoretical determination of
the dissociation energy of H2.
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(20) Osterwalder, A.; Wüest, A.; Merkt, F.; Jungen, C. J. Chem.
Phys. 2004, 121, 11810.

(21) Korobov, V. I. Phys. ReV. A: At., Mol., Opt. Phys. 2006,
73, 024502.

(22) Korobov, V. I. Phys. ReV. A: At., Mol., Opt. Phys. 2006,
74, 052506.

(23) Korobov, V. I. Phys. ReV. A: At., Mol., Opt. Phys. 2008,
77, 022509.

(24) Karr, J.-P.; Bielsa, F.; Douillet, A.; Gutierrez, J. P.; Korobov,
V. I.; Hilico, L. Phys. ReV. A: At., Mol., Opt. Phys. 2008,
77, 063410.

(25) Bethe, H. A.; Salpeter, E. E. Quantum Mechanics of One-
and Two-Electron Systems; Springer: Berlin, Germany, 1975.

(26) Araki, H. Prog. Theor. Phys. 1957, 17, 619.

(27) Sucher, J. Phys. ReV. 1958, 109, 1010.

(28) Garcia, J. D. Phys. ReV. 1966, 14, 66.

(29) Bishop, D. M.; Cheung, L. M. J. Phys. B 1978, 11, 3133.

(30) Bukowski, R.; Moszynski, R.; Jeziorski, B.; Kołos, W. Int.
J. Quantum Chem. 1992, 42, 287.

(31) CODATA, The Committee on Data for Science and
Technology http://www.codata.org/ (accessed Aug 26, 2009).

(32) Pachucki, K. Phys. ReV. A: At., Mol., Opt. Phys. 2005, 71,
012503.

(33) Pachucki, K. Phys. ReV. A: At., Mol., Opt. Phys. 2006, 74,
022512.

(34) Kolos, W.; Wolniewicz, L. ReV. Mod. Phys. 1963, 35, 473.

(35) Bubin, S.; Adamowicz, L. J. Chem. Phys. 2003, 118, 3079.

(36) Kolos, W. AdV. Quantum Chem. 1970, 5, 99.

(37) Kutzelnigg, W. Mol. Phys. 1997, 90, 909.

(38) Tang, K. T.; Toennies, J. P. J. Chem. Phys. 1984, 80, 3726.

(39) Mitroy, J.; Ovsiannikov, V. D. Chem. Phys. Lett. 2005, 412,
76.

(40) Ovsiannikov, V. D.; Mitroy, J. J. Phys. B 2006, 39, 159.

(41) Sims, J.; Hagstrom, S. J. Chem. Phys. 2006, 124, 094101.

(42) Cencek, W. 2003, private communication.

(43) Pachucki, K.; Komasa, J. J. Chem. Phys. 2009, 130, 164113.

(44) Pachucki, K.; Komasa, J. J. Chem. Phys. 2008, 129, 034102.

(45) Bubin, S.; Leonarski, F.; Stanke, M.; Adamowicz, L. Chem.
Phys. Lett. 2009, 477, 12.

(46) Pachucki, K. Phys. ReV. A: At., Mol., Opt. Phys. 2004, 69,
052502.

(47) Pachucki, K. Phys. ReV. A: At., Mol., Opt. Phys. 2007, 76,
022106.

(48) Stone, A. P. Proc. Phys. Soc. (London) 1961, 77, 786.

Dissociation Energy of Molecular Hydrogen J. Chem. Theory Comput., Vol. 5, No. 11, 2009 3047



(49) Stone, A. P. Proc. Phys. Soc. (London) 1963, 81,
868.

(50) Wolniewicz, L. J. Chem. Phys. 1993, 99, 1851–1868.

(51) Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1966, 45,
509.

(52) Piszczatowski, K.; Lach, G.; Jeziorski, B. Phys. ReV. A: At.,
Mol., Opt. Phys. 2008, 77, 062514.

(53) Meath, W. J.; Hirschfelder, J. O. J. Chem. Phys. 1966, 44,
3197.

(54) Pachucki, K. Phys. ReV. A: At., Mol., Opt. Phys. 2005, 72,
062706.

(55) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100,
2975.

(56) DALTON, a Molecular Electronic Structure Program,
Release 2.0, 2005; http://www.kjemi.uio.no/software/dalton/
dalton.html.

(57) Pachucki, K.; Komasa, J. Phys. ReV. A: At., Mol., Opt. Phys.
2003, 68, 042507.

(58) Pachucki, K.; Komasa, J. Phys. ReV. Lett. 2004, 92, 213001.

(59) Pachucki, K.; Komasa, J. J. Chem. Phys. 2006, 125, 294394.

(60) Schwartz, C. Phys. ReV. 1961, 123, 1700.

(61) Jeziorski, B.; Bukowski, R.; Szalewicz, K. Int. J. Quantum
Chem. 1997, 61, 769.

(62) Hill, R. N. Int. J. Quantum Chem. 1998, 68, 357.

(63) Pachucki, K.; Cencek, W.; Komasa, J. J. Chem. Phys. 2005,
122, 184101.

(64) Casimir, H. B. G.; Polder, D. Phys. ReV. 1948, 73,
360.

(65) Stanke, M.; Kedziera, D.; Bubin, S.; Molski, M.; Adamowicz,
L. J. Chem. Phys. 2008, 128, 114313.

(66) Dabrowski, I. Can. J. Phys. 1984, 62, 1639.

CT900391P

3048 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Piszczatowski et al.



Can Induced Orbital Paramagnetism Be Controlled by
Strong Magnetic Fields?

G. I. Pagola,*,† M. B. Ferraro,† and P. Lazzeretti‡

Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, UniVersidad de
Buenos Aires, Ciudad UniVersitaria, Pab. I, (1428) Buenos Aires, Argentina, and

Dipartimento di Chimica dell’UniVersita degli Studi di Modena e Reggio Emilia,
Via Campi 183, 41100 Modena, Italy

Received July 30, 2009

Abstract: Magnetic hypersusceptibilities and hypershielding at the nuclei of BH, CH+, C4H4,
and C8H8 molecules in the presence of an external spatially uniform, time-independent magnetic
field have been investigated accounting for cubic response contributions via Rayleigh-Schrödinger
perturbation theory. Numerical estimates have been obtained at the coupled Hartree-Fock and
density-functional levels of theory within the conventional common-origin approach, using
extended gaugeless basis sets. The fundamental role of electron correlation effects was
assessed. Critical values of the applied magnetic field at which transition from paramagnetic to
diamagnetic behavior would occur were estimated. It is shown that perturbative methods may
successfully be employed to estimate the interaction energy for big cyclic molecules.

I. Introduction

Strong magnetic fields are well-known to severely modify
the structure and properties of matter. This holds not only
for bulk systems where extraordinary phenomena such as,
for example, the quantum Hall effect, have been discovered
but, in particular, for the elementary constituents of matter,
that is, atoms and molecules.1

Recently, the response of atoms and molecules to strong
magnetic fields became a subject of increasing interest in
different areas of physics such as astrophysics and atomic,
molecular, and solid-state physics. Bound-particle systems
in external magnetic fields show a number of intriguing
features which are not observable in field-free space and
which manifest themselves at the level of the basic equations
of motion.

Observations of radio pulsars and accreting neutron stars
in X-ray binaries, possessing surface fields in excess of 108

T, and the detection of magnetic white dwarf stars with
superstrong fields have further increased interest in this area.
A “magnetar” with a magnetic field stronger than any other

known object in the universe, the soft gamma repeater known
as SGR 1900+14, lying 20 000 light years away, has been
discovered in the constellation of Aquila.2 Magnetic fields
as big as 800 trillion times that of the Earth cause the surface
of magnetars to ripple and crack, releasing strong bursts of
radiation.

A review of atoms in strong magnetic fields, reporting
tabulations of numerical data, is available in a monograph
by Ruder et al.3 Other references are the conference
proceedings on Atoms and Molecules in Strong External
Fields edited by Schmelcher and Schweizer4 and the special
issue of the International Journal of Quantum Chemistry
dedicated to the properties of molecules in strong magnetic
fields, edited by Runge and Sabin.5 An extensive review on
atoms, molecules, and bulk matter has been reported by Lai.1

Atoms and molecules in strong magnetic fields are also
of interest from a purely theoretical point of view.6,7 The
difficulty in theoretically treating atoms in strong magnetic
fields lies in the fact that a strong rearrangement of the
electronic wave function takes place, which is particularly
dramatic in the so-called intermediate regime, in which
matter interacts with fields from 103 to 105 T. In the presence
of fields of this strength, magnetic and Coulomb forces are
of nearly equal importance: neither can be treated as a
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perturbation of the other. Due to the competition of the
spherically symmetric Coulomb potential, and the cylindri-
cally symmetric magnetic field interaction, the problem is
formally non-integrable.

The “strong field” regime is typical of a situation in which
the Lorentz force is on the order of magnitude of or greater
than the Coulomb binding force. For a hydrogen atom in
the ground state, the corresponding field strength cannot be
reached in the laboratory, but only in astrophysical objects.
However, the strong magnetic field regime is accessible in
the laboratory for highly excited Rydberg states of atoms.3,4,8

In molecules, difficulties arise from nonseparability of the
center of mass and internal motion,7 and the screened
Born-Oppenheimer approximation6,9 has been advocated to
guarantee the validity of an adiabatic approximation in the
presence of magnetic fields. Most studies of molecules in
strong magnetic fields have been restricted to hydrogen
molecular ion H2

+.10-16 There exist some investigations
dealing with the electronic structure of the neutral molecule
H2 in the presence of a strong magnetic field.17-23

Highly excited states of H2 were studied for a field strength
of 4.7 T by Monteiro and Taylor.17 For intermediate field
strengths, two studies of almost qualitative character exam-
ined the potential energy curve of the lowest 1Σg state.18,19

A few investigations were performed at the high field
limit,20-24 where the magnetic forces dominate over the

Coulomb forces. The ground state of the H2 molecule in the
parallel configuration, in which the internuclear and magnetic
field axes coincide, has been investigated by Kravchenko
and Liberman,25,26 and by Detmer et al.25,27,28

According to the fundamental results arrived at in ref 26
using a fully numerical Hartree-Fock approach, the ground
state of H2 in a magnetic field below 4.2 × 104 T is the
strongly bound singlet state 1Σg. For magnetic fields stronger
than 3 × 106 T, the ground state becomes the strongly bound
triplet 3Πu, and for magnetic fields between 4.2 × 104 T
and 3 × 106 T, the symmetry of the ground state is the triplet
state 3Σu, which is characterized by repulsion at intermediate
internuclear distances and by a weak quadrupole-quadrupole
interaction between atoms at large internuclear separation.
In this region of magnetic field strength, the hydrogen
molecule is bound weakly, if at all; the hydrogen atoms
behave like a weakly nonideal gas of Bose particles and can
form a superfluid phase.

Nonperturbative Hartree-Fock calculations on molecules
in strong magnetic fields were recently reported using
London orbitals by Tellgren et al. For a number of molecules,
plots of the interaction energy as a function of the magnetic
field were shown.29,30 Highly nonlinear behavior was
discovered for closed-shell paramagnetic species BH and
CH+, which would become diamagnetic for field strengths
higher than 0.22 and 0.45 au, respectively. Surprisingly

Figure 1. Response properties of the BH molecule in a magnetic field normal to the bond direction. Top left: Magnetic interaction
energy. Top right: Magnetic field induced at the boron nucleus. Bottom left: Induced magnetic moment. Bottom right: Magnetic
field induced at the hydrogen nucleus.
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enough, the curve for BH in the presence of a perpendicular
field indicates that, for a field as big as 0.4 au, that is, ≈105

T, the interaction energy would vanish, as happens for the
molecule in the absence of magnetic perturbation, see
Figure 1d of ref 29.

II. Perturbation Theory Approach to Cubic
Response

Perturbation theory, which is applicable in the weak field
regime, breaks down in the intermediate field regime.
However, for a time, standard perturbative methods were
taken into account for predicting observable phenomena in
a terrestrial environment.31 Ramsey32 considered possible
deviations from linear dependence of the resonance frequen-
cies on the strength of the external magnetic field in nuclear
magnetic resonance (NMR) spectroscopy. Bendall and Dod-
drell reported an experimental observation of a field-
dependent 59Co chemical shift in two compounds.31 Źaucer
and Aźman33 suggested that departures from linear depen-
dence between the induced magnetic dipole moment and the
applied field can arise in a molecule, due to magnetic field
dependence of the magnetic susceptibility. Magnetic field-
dependent nuclear spin-spin coupling was discussed by
Raynes and Stevens via fourth-order perturbation theory.34

A few semiempirical35,36 and ab initio calculations37 have
been carried out. Theoretical aspects of the magnetic-field
dependence of quadrupole splitting in 131 Xe were considered
by Vaara and Pykkö, who presented accurate numerical
predictions38 in good agreement with corresponding experi-

mental values.39 Theoretical and computational studies on
nuclear magnetic shielding in closed-shell atoms as a function
of even powers of a perturbing magnetic field were reported
by Vaara and co-workers,40 and the magnetic-field depen-
dence of 59Co nuclear magnetic shielding in Co(III) com-
plexes was investigated.41 Nonlinear ring currents and the
effect of strong magnetic fields on π-electron circulation were
analyzed by Soncini and Fowler.42

Increasing attention is being paid to nonlinear magnetic
response43 in view of possible technological applications,
for example, a semiconductor-to-metal switch, which can be
operated via the Aharonov-Bohm effect in carbon nanocyl-
inders whose axes are aligned along a strong magnetic
field,44,45 the quantum Hall effect observed in graphene
sheets at room temperature,46 and the field-induced change
of the electronic band structure of CeBiPt evidenced by
electrical-transport measurements in pulsed magnetic fields.47

A systematic study of molecular response to intense
magnetic fields in the lower limit of the intermediate regime
has recently been undertaken to rationalize the phenomenol-
ogy induced in the electron distribution of diamagnetic atoms
and molecules: a computational approach to nonlinear
magnetic field dependence of magnetic susceptibility and
electric and magnetic nuclear shielding has been developed
in a series of papers within the framework of the
Rayleigh-Schrödinger perturbation theory, allowing for the
conventional common origin (CO) choice, gaugeless basis
sets, and coupled Hartree-Fock approximation.48-55

The present study attempts to evaluate fourth-rank hyper-
magnetizability and nuclear magnetic hypershielding tensors
in some closed-shell systems characterized by induced orbital
paramagnetism,56 the BH molecule,56-69 the CH+ cation,68-70

and two planar unsaturated hydrocarbons exhibiting π
paramagnetism, cyclobutadiene C4H4,

71,72 and flattened cy-

Table 1. Magnetic Hypershielding,a ΣR�γδ
B , and Shielding,b

σR�
B , of the Boron Nucleus in the BH Molecule

method componentc ΣB(B)d ΣB(H)d

CHF (CO) xxxx 5.043×105 5.043×105

xxyy 1.681×105 1.681×105

xxzz -3.009×104 -3.009×104

zxxz -3.600×104 -3.600×104

zzzz 45.0 45.0
〈ΣB〉 2.425×105 2.425×105

DFT (KT3) xxxx 3.808×105 4.252×105

xxyy 1.269×105 1.417×105

xxzz -2.143×104 -2.143×104

zxxz -2.572×104 -2.572×104

zzzz 47.89 47.89
〈ΣB〉 1.843×105 2.079×105

method CHF(CO) DFT(KT3)

componente σB(B)d σB(B)d

xx -506.7 -398.7
zz 198.9 202.4
〈σB〉 -271.5 -198.3
component σB(H)d σB(H)d

xx -506.6 -398.6
zz 198.9 202.4
〈σB〉 -271.5 -198.3

a In ppm SI atomic units. The conversion factor to SI units is
1.80997698 × 10-11 T-2, using the CODATA values of the
fundamental constants 2002.83 Coordinates in bohr: H (0,
0,-2.1120108509); B (0, 0, 0.19333975910). b In ppm. c Only
components contributing to the average property are reported.
yyyy ) xxxx, xxyy ) yxxy, xxzz ) yyzz, zxxz ) zyyz by symmetry.
d Common origin results; the gauge origin is indicated between
parentheses. e xx ) yy by symmetry.

Table 2. Magnetic Hypershielding, ΣR�γδ
H , and Shielding,

σR�
H , of the Hydrogen Nucleus in the BH Moleculea

method component ΣH(H) ΣH(B)

CHF (CO) xxxx 4252 4242
xxyy 1417 1414
xxzz -277.6 -277.7
zxxz -4299 -4298
zzzz 24.55 24.55
〈ΣH〉 442.1 436.8

DFT (KT3) xxxx 7857 5898
xxyy 2619 1966
xxzz -350.1 -350.2
zxxz -3081 -3082
zzzz 27.90 27.90
〈ΣH〉 2823 1778

method CHF(CO) DFT(KT3)

component σH(H) σH(H)
xx 20.58 18.25
zz 33.93 34.18
〈σH〉 25.03 23.56
component σH(B) σH(B)
xx 20.56 18.23
zz 33.93 34.10
〈σH〉 25.02 23.55

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations.
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clo-octatetraene (COT) C8H8. A “clamped” planar structure
of COT is annelated with perfluorocyclobuteno moieties73

and with bicyclo[2.1.1] hex-2-ene groups.74,75

The scope of the present research is (i) to investigate
the reliability and the limits of approaches neglecting
contributions higher than a cubic response’s; (ii) to

compare fourth-rank hypermagnetizabilities and hyper-
shieldings as properties suitable for experimental detection
of nonlinear behavior; (iii) to estimate the contribution
of electron correlation to fourth-rank magnetic tensors via
density functional theory (DFT), allowing for the Keal-
Tozer KT3 functional;76,77 and (iv) to investigate whether
induced orbital paramagnetism can be controlled by
applying a magnetic field of increasing strength.

The approaches employed are outlined in section III.
Numerical estimates of the fourth-rank hypershieldings for
the molecules BH, C4H4, and C8H8 and the CH+ cation, and
a discussion of results are also reported in section III.

III. Calculation of Fourth-Rank Magnetic
Tensors

The energy of a closed-shell molecule in the electronic
reference state a, in the presence of an external spatially
uniform and time-independent magnetic field B and of an
intramolecular permanent magnetic dipole mI at nucleus
I can be written as a Taylor series:48-55

where Wa
(0) is the energy of the isolated molecule, �R� is

the magnetic susceptibility, and σR�
I is the magnetic

shielding at nucleus I. The fourth-rank tensors XR�γδ and
ΣR�γδ

I account for nonlinear response in B. The explicit
expressions needed to calculate these quantities contain
10 propagators, see eq 18 of ref 48 and eq 28 of ref 53.
Einstein’s convention of summing over repeated Greek
indices is in force throughout this paper.

Table 3. Magnetic Hypersusceptibility,a XR�γδ, and
Susceptibility,b �R�, of the BH Molecule

method componentc X(H)d X(CM)d

CHF (CO) xxxx -7882 -7881
xxyy -2627 -2627
xxzz 400.2 400.2
zzzz 36.02 36.02
〈X〉 -3876 -3875

DFT (KT3) xxxx -6962 -5902
xxyy -2320 -1967
xxzz 277.8 277.9
zzzz 41.28 41.28
〈X〉 -3483 -2918

method CHF(CO) DFT(KT3)

componente �(H)d �(H)d

xx 7.15 5.44
zz -2.51 -2.50
〈�〉 3.93 2.80
componente �(CM)d �(CM)d

xx 7.15 5.44
zz -2.51 -2.50
〈�〉 3.93 2.79

a In SI atomic units. The conversion factor to SI units is
1.42825951 × 10-39 JT-4 per molecule, see ref 83. b In SI atomic
units. The conversion factor to SI units is 7.891036 60 × 10-29

JT-2, see ref 83. c Only components contributing to the average
property are reported. yyyy ) xxxx and xxzz ) yyzz by symmetry.
d Common origin results; the gauge origin is indicated between
parentheses. e xx ) yy by symmetry.

Table 4. Magnetic Hypershielding, ΣR�γδ
C , and Shielding,

σR�
C , of the Carbon Nucleus in the CH+ Cationa

method component ΣC(C) ΣC(H)

CHF (CO) xxxx 2.642×106 2.618×106

xxyy 8.807×105 8.727×105

xxzz -1.103×105 -1.095×105

zxxz -1.307×105 -1.297×105

zzzz 14.99 14.99
〈ΣC〉 1.313×106 1.301×106

DFT (KT3) xxxx 8.983×105 9.665×105

xxyy 2.994×105 3.222×105

xxzz -4.820×104 -4.821×104

zxxz -5.749×104 -5.750×104

zzzz 15.68 15.68
〈ΣC〉 4.368×105 4.732×105

method CHF(CO) DFT(KT3)

component σC(C) σC(C)
xx -2051 -1276
zz 247.0 250.4
〈σC〉 -1285 -767.0
component σC(H) σC(H)
xx -2047 -1276
zz 247.0 250.4
〈σC〉 -1282 -767.1

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations. Coordinates in bohr: H (0, 0, 0); C (0, 0,
2.1370912849).

Table 5. Magnetic Hypershielding, ΣR�γδ
H , and Shielding,

σR�
H , of the Hydrogen Nucleus in the CH+ Cationa

method component ΣH(H) ΣH(C)

CHF (CO) xxxx -2.032 × 104 -2.034 × 104

xxyy -6773 -6779
xxzz 789.0 789.1
zxxz -7665 -7659
zzzz 5.86 5.86
〈ΣH〉 -1.359 × 104 -1.359 × 104

DFT (KT3) xxxx -4295 -4966
xxyy -1432 -1655
xxzz 231.9 232.0
zxxz -3320 -3317
zzzz 7.42 7.42
〈ΣH〉 -3525 -3881

method CHF(CO) DFT(KT3)

component σH(H) σH(H)
xx 35.79 27.63
zz 30.17 30.56
〈σC〉 33.92 28.61
component σH(C) σH(C)
xx 35.65 27.50
zz 30.17 30.56
〈σH〉 33.82 28.52

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations.

Wa ) Wa
(0) + Wa

(2) + Wa
(4) + ... ) Wa

(0) - 1
2

�R�BRB� -

1
24

XR�γδBRB�BγBδ + ...+σR�
I mIRB� + 1

6
ΣR�γδ

I mIRB�BγBδ +

... (1)
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The induced orbital magnetic dipole is

The magnetic field induced at the nucleus in question by
the n electrons responding to the perturbation is

where

is the field-dependent magnetic shielding at nucleus I. For
the species BH and CH+ characterized by diamagnetism in
the z bond direction, that is, �| ≡ �zz < 0, and strong
paramagnetism in the radial direction, we will consider only
terms depending on B⊥, rewriting eq 1 in the truncated form

where the perpendicular components of the susceptibility are
denoted �⊥ ≡ �xx ) �yy > 0 and X⊥ ≡ Xxxxx ) Xyyyy < 0. The
interaction energy (eq 5) has a local maximum Wa

(2) + Wa
(4)

) 0 for B⊥ ) 0, an inflection point for B⊥ ≡ Bs )
�(2�⊥/|X⊥|), a minimum -3�⊥

2 /(2|X⊥|) for B⊥ ≡ Bm )
�(6�⊥/|X⊥|). It vanishes also for B⊥ ≡ Bc ) �(12�⊥/|X⊥|),
and it becomes positive, that is, destabilizing, beyond this
field value.

The orbital magnetic dipole induced by B⊥ in the radial
direction of the BH molecule

reaches its maximum paramagnetic value 〈ms〉 )
(2/3)�⊥�(2�⊥/|X⊥|) at the inflection point of the interaction
energy, Bs. It vanishes at B ⊥ ) 0 and for B ⊥ ) Bm, where
transition from paramagnetic to diamagnetic response occurs.
For instance, using the theoretical CHF results reported in
Table 3, �⊥ ) 7.15 au and X⊥ ) -7882 au, we find Bs ≈
4.3 × 10-2 au and 〈ms〉 ≈ 0.20 au, compare Figure 1.

The radial component of magnetic field induced at nucleus
I by B⊥ applied perpendicular to the BH bond is

indicating by σ⊥
I and Σ⊥

I the perpendicular components of
nuclear shielding and hypershielding. If I is either H or B,
with σ⊥

I and Σ⊥
I of opposite sign, then an extremum point of

〈B̂I⊥
n 〉 occurs at B⊥* ) �(|2σ⊥

I /Σ⊥
I |). Relationships similar to

5-7 hold for the other systems studied.
Magnetic susceptibilities and hypersusceptibilities, mag-

netic shielding, and hypershieldings at the nuclei have been
calculated for BH, CH+, C4H4, and C8H8 at two levels of

Table 6. Magnetic Hypersusceptibility,a XR�γδ, and
Susceptibility, �R�, of the CH+ Cation

Method Component X (H) X (CM)

CHF (CO) xxxx -1.452 × 104 -1.451 × 104

xxyy -4839 -4836
xxzz 574.2 573.8
zzzz 4.57 4.57
〈X〉 -7282 -7279

DFT (KT3)c xxxx -5435 -4880
xxyy -1812 -1627
xxzz 242.8 242.5
zzzz 4.79 4.79
〈X〉 -2703 -2408

method CHF(CO) DFT(KT3)

component �(H) �(H)
xx 10.59 6.30
zz -1.44 -1.44
〈�〉 6.58 3.72
component �(CM) �(CM)
xx 10.59 6.29
zz -1.44 -1.44
〈�〉 6.58 3.72

a See footnotes a-e of Table 3 for the use of symbols, units,
and abbreviations.

Table 7. Magnetic Hypershielding, ΣR�γδ
C , and Shielding,

σR�
C , of the Carbon Nucleus in the C4H4 Moleculea

method component ΣC(C) ΣC(CM)

CHF (CO) xxxx 7751 7728
xxyy -2727 -2719
xxzz -1808 -1805
yxxy -1.884 × 104 -1.890 × 104

yyyy -1900 -1863
yyzz 916.4 893.6
zxxz 5454 5424
zyyz 2559 2550
zzzz 1.252 × 104 1.250 × 104

〈ΣC〉 785.6 761.5
DFT (KT3) xxxx 1.253 × 104 1.229 × 104

xxyy -2029 -2090
xxzz -1232 -1305
yxxy -1.726 × 104 -1.642 × 104

yyyy 1151 1075
yyzz 1361 1405
zxxz 5831 6309
zyyz 2673 2713
zzzz 1.231 × 104 1.208 × 104

〈ΣC〉 3066 3211

method CHF(CO) DFT(KT3)

component σC(C) σC(C)
xx 124.2 108.1
yy 107.0 94.23
yz -69.37 -56.46
zy 28.51 28.29
zz -106.6 -66.40
〈σC〉 41.53 45.32
component σC(H) σC(H)
xx 124.1 108.0
yy 106.9 94.18
yz -69.32 -56.42
zy 28.67 28.49
zz -106.7 -66.57
〈σC〉 41.42 45.21

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations. Coordinates in bohr: H (0, 2.69820955550,
2.9255001457); C (0, 1.2552449153, 1.4870179359).

〈m̂R〉 ) -
∂Wa

∂BR
) �R�B� + 1

6
XR�γδB�BγBδ + ...-

σ�R
I mI� - 1

2
Σ�Rγδ

I mI�BγBδ + ... (2)

〈B̂IR
n 〉 ) -
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∂mIR
) -σR�

I B� - 1
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∫ σR�
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I + 1
2
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I BγBδ + ... (4)
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(4) ≈ -1

2
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|X⊥|B⊥
4 (5)
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Table 8. Magnetic Hypershielding, ΣR�γδ
H , and Shielding,

σR�
H , of the Hydrogen Nucleus in the C4H4 Moleculea

method component ΣH(H) ΣH(CM)

CHF (CO) xxxx -1410 -1493
xxyy 57.94 26.24
xxzz 55.54 31.05
yxxy -941.3 -958.5
yyyy -132.6 -180.9
yyzz -57.33 -74.16
zxxz 170.6 158.2
zyyz -63.49 -76.61
zzzz 504.5 460.6
〈ΣH〉 -363.3 -421.5

DFT (KT3) xxxx -907.6 -1981
xxyy 176.7 8.86
xxzz 132.1 17.18
yxxy -829.0 -952.1
yyyy 225.7 -75.79
yyzz 43.00 -49.71
zxxz 237.2 115.1
zyyz 43.64 -51.34
zzzz 720.0 475.0
〈ΣH〉 -31.66 -498.8

method HF(CO) DFT(KT3)

component σH(H) σH(H)
xx 28.04 28.15
yy 28.77 27.56
zz 21.21 21.90
〈σC〉 26.00 25.87
component σH(CM) σH(CM)
xx 27.61 27.70
yy 28.57 27.38
zz 21.01 21.72
〈σH〉 25.73 25.60

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations.
Table 9. Magnetic Hypersusceptibility,a XR�γδ, and
Susceptibility, �R�, of the C4H4 Molecule

method component X(C) X(CM)

CHF (CO) xxxx -3869 -3847
xxyy -81.99 -72.78
xxzz 39.09 46.01
yyyy -431.7 -405.7
yyzz -41.50 -36.16
zzzz -146.7 -139.5
〈X〉 -923.3 -903.6

DFT (KT3) xxxx -5329 -4999
xxyy -222.6 -158.4
xxzz -5.57 25.71
yyyy -563.8 -454.0
yyzz -85.26 -59.48
zzzz -223.0 -182.2
〈X〉 -1348 -1204

method HF(CO) DFT(KT3)

component �(C) �(C)
xx -0.78 -0.13
yy -4.60 -4.21
zz -5.27 -5.20
〈�〉 -3.55 -3.18
component �(CM) �(CM)
xx -0.77 -0.12
yy -4.59 -4.21
zz -5.26 -5.19
〈�〉 -3.54 -3.17

a See footnotes a-e of Table 3 for the use of symbols, units,
and abbreviations.

Table 10. Magnetic Hypershielding, ΣR�γδ
C , and Shielding,

σR�
C , of the Carbon Nucleus in the C8H8 Moleculea

method CHF(CO) DFT(KT3)

component ΣC(C) ΣC(C)
xxxx 7211 7883
xxyy 2249 2124
xxzz -4.655 × 104 -8.584 × 104

yxxy 2853 2831
yyyy 4512 4597
yyzz 2.215 × 104 5.021 × 104

zxxz 1134 2526
zyyz -835.9 -409.1
zzzz 8.016 × 104 5.561 × 104

〈ΣC〉 1.458 × 104 1.080 × 105

method CHF(CO) DFT(KT3)

component σC(C) σC(C)
xx -2.40 -0.26
yy 24.72 36.73
zz 143.3 106.4
〈σC〉 55.20 47.61

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations. Coordinates in bohr: H (5.1668362830,
2.1620413390, 0); C (3.2324200158 1.40696913683, 0).

Table 11. Magnetic Hypershielding, ΣR�γδ
H , and Shielding

σR�
H , of the Hydrogen Nucleus in the C8H8 Moleculea

Method CHF(CO) DFT(KT3)

component ΣH(H) ΣH(H)
xxxx 446.9 762.7
xxyy 122.1 308.9
xxzz -1440 -2473
yxxy 66.00 250.0
yyyy 42.0 888.1
yyzz 503.3 1981
zxxz 72.75 195.2
zzzz -3.323 × 104 -2.033 × 105

〈ΣH〉 -6.690 × 103 -4.029 × 104

method CHF(CO) DFT(KT3)

component σH(H) σH(H)
xx 27.94 27.17
yy 30.63 30.29
zz 33.12 41.03
〈σH〉 30.56 32.83

a See footnotes a-e of Table 1 for the use of symbols, units,
and abbreviations.

Table 12. Magnetic Hypersusceptibility,a XR�γδ, and
Susceptibility, �R�, of the C8H8 Molecule

method CHF(CO) DFT(KT3)

component X(CM) X(CM)
xxxx -477.1 -818.7
xxyy -166.1 -303.8
xxzz -554.5 -1459
zzzz -1.393×105 -8.492×105

〈X〉 -2.857×104 -1.715×105

method CHF(CO) DFT(KT3)

component �(CM) �(CM)
xx -12.25 -11.34
zz 16.78 48.83
〈�〉 -2.57 8.72

a See footnotes a-e of Table 3 for the use of symbols, units,
and abbreviations.
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accuracy, coupled Hartree-Fock (CHF), equivalent to
random-phase approximation (RPA), and DFT, allowing for
the KT3 functional,76,77 implemented in the DALTON
package.78 The KT3 functional was found to be the most
efficient for calculating shielding constants in a series of
small molecules79 and for studies of hydrogen bonding.80

Calculated values for tensor components are reported in
Tables 1-12. The isotropic term 〈ΣI〉 is defined:

and 〈X〉 is analogously defined.
We give data needed to reproduce our calculations of the

properties in eqs 1-7. Gaussian basis sets used for the BH
molecule are as follows: for B, the 13s set from ref 81 plus
one s with exponent 0.022845; the 8p set from ref 81 plus
a 3p set of functions with exponents 880.0, 220.0, and
0.01588267; the 8d set with exponents 29.97, 9.99, 3.33,
1.110, 0.402, 0.145, 0.048333, and 0.016111; the 5f set with
exponents 2.646, 0.882, 0.311, 0.103667, and 0.03455567;
for H, the 10s set from ref 81; the 6p set with exponents
18.807, 6.269, 2.292, 0.838, 0.292, and 0.09733; the 3d set
with exponents 3.171, 1.057, and 0.3523. Gaussian basis sets
used for the CH+ and C4H4 molecules are as follows: for C,
the 13s set from ref 81, the 8p set from ref 81 plus a 2p set
of functions with exponents 1512.9 and 355.1; the 5d set

with exponents 5.262, 1.848, 0.649, 0.228, and 0.08; and
the 2f set with exponents 1.419 and 0.485; for H, the 10s
set from ref 81, the 4p set with exponents 6.269, 2.292, 0.838,
and 0.292; one d function with exponent 1.057. The Gaussian
basis set used for the C8H8 molecule was the truncated aug-
cc-pCVTZ, (12s7p3d2f/6s3p2d) f 6s5p3d2f/4s3p2d basis
set from ref 52. The molecular geometries for BH, and CH+

were optimized at the HF scheme with the same basis set
employed in the calculations; that of C4H4 was optimized at
the B3LYP82 level of theory, with the same basis set
employed in the calculations. The molecular geometry of
cyclo-octatetraene was taken from ref 52. The interaction
energy, eq 5; induced orbital magnetic moment, eq 6; and
magnetic field induced at the nuclei, eq 7, are displayed in
Figures 1-4 as a function of the applied magnetic field.

Within the assumption of cubic response, the values of
magnetic field B⊥ ) Bm at which a transition from the
paramagnetic to diamagnetic response would take place
(corresponding to a change of sign in eq 6 for the induced
moment) are, in atomic units (1 au of magnetic flux density
p/ea0

2 ) 2.35051742 × 105 T from ref 83), ≈7.4 × 10-2,
≈6.6 × 10-2, and ≈2.7 × 10-2, respectively, for BH, CH+,
and C8H8, within the CHF approximation, see the red and
blue curves in Figures 1, 2, and 4. Since �⊥ and X⊥ have the
same sign in C4H4, no transition was observed in Figure 3.

Figure 2. Response properties of the CH+ cation in a magnetic field normal to the bond direction. Top left: Magnetic interaction
energy. Top right: Magnetic field induced at the carbon nucleus. Bottom left: Induced magnetic moment. Bottom right: Magnetic
field induced at the hydrogen nucleus.
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Analogously, the values of B⊥*, in atomic units, corre-
sponding to a change of sign of 〈B̂H⊥

n 〉 in eq 7, are
≈5.9 × 10-2 and ≈4.5 × 10-2, for CH+ and C8H8 at the
CHF level, respectively. σ⊥

H and Σ⊥
H have the same sign in

BH and C4H4, compare for the monotonically decreasing
green curves in Figures 1 and 3.

The values of B⊥*, in atomic units, for a sign inversion of
the shielding of the heavier nucleus are ≈4.5 × 10-2,
≈3.9 × 10-2, and ≈0.13, for BH, CH+, and C4H4. The green
curve for the shielding of the C nucleus in C8H8 decreases
monotonically in Figure 4.

We observe that, within the assumption of cubic response,
that is, neglecting higher nonlinear contributions, and within
the CHF approximation, the critical Bm values of external
magnetic field at which transition from induced orbital
paramagnetism to diamagnetic behavior would occur in BH,
≈0.074 au, and CH+, ≈0.066 au, are much smaller than those
predicted by Tellgren et al.,30 0.25 and 0.45 au, respectively.
This seems to imply that perturbative approaches like those
employed in the present investigations are basically unsuit-
able to describe a nonlinear response to extra-strong magnetic
fields of diatomics such as BH and CH+, characterized by
strong radial paramagnetism.

However, on increasing the size of the perturbed system,
the discrepancies between the predictions in ref 30 and ours
become smaller; compare the values for the clamped COT

molecule, ≈ 0.035 au, estimated by Tellgren et al. with Bm

≈ 0.027 obtained here. This trend is expected, since the
magnitude of the critical field B⊥ ) Bm decreases with the
area of the system. In fact, orbital magnetism is proportional
to the external magnetic flux; so that Bm varies approximately
as the inverse of the area of the molecule.30 Therefore,
perturbative approaches like those applied here are accurate
and can safely be used to rationalize a nonlinear response in
systems spread over a large surface, which are most
interesting for practical applications.43-46

On the other hand, the radial component �⊥ of the second-
rank magnetizability of BH is known to be affected by
electron correlation, as demonstrated by multiconfiguration
self-consistent-field calculations.69 Also, the KT3 results in
Table 3 indicate that paramagnetism is lowered with respect
to CHF. A similar reduction of �⊥ for the CH+ cation is
observed in Table 6. Correlation contributions dramatically
influence both hypermagnetizabilities and hypershieldings
according to the present investigations. Tables 1-6 show
that the xxxx, xxyy, xxzz, and zxxz components of magnetic
tensors are most affected.

Although the KT3 predictions obtained via the gaugeless
basis sets depend strongly on the origin assumed in the
calculation, much more than the corresponding CHF (which
would be origin-independent for a complete basis set),
inspection of the tables shows that electron correlation

Figure 3. Response properties of the C4H4 molecule in a magnetic field normal to the molecular plane. Top left: Magnetic
interaction energy. Top right: Magnetic field induced at the carbon nucleus. Bottom left: Induced magnetic moment. Bottom
right: Magnetic field induced at the hydrogen nucleus.
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provides a huge positive contribution to X⊥ of paramagnetic
diatomics. The difference between CHF and DFT KT3
estimates is as big as ≈2 × 103 au for BH and ≈1 × 104 au
for CH+, for the gauge origin on the center of mass. Quite
remarkably, the correlation contributions to X⊥ ≡ Xzzzz of
cyclobutadiene and COT are negative. However, for the
gauge origin on the center of mass, we calculated ≈-43 au
for the former, see Table 9, and ≈-7 × 105 au for the latter,
Table 12, at the KT3 level. Enormous changes were found
also for Σ⊥

I , KT3 estimates being in many cases an order of
magnitude smaller than those of CHF.

Notwithstanding the evident lack of accuracy of our
common origin KT3 calculations of X⊥ and Σ⊥, the results
obtained here indicate that either perturbative or nonpertur-
bative30 calculations not taking electron correlation into
account are limitedly reliable for predicting critical values
of the applied magnetic field Bm at which the interaction
energy changes sign in systems such as BH and CH+. One
can therefore conclude that transition from orbital induced
paramagnetism56 to diamagnetism should occur at much
smaller values of critical Bm than those predicted by CHF
or RPA calculations not taking electron correlation into
account.

Eventually, the magnitude of theoretical values obtained
in this study and in a previous one for nitroso and diazene
compounds55 seem to indicate that nuclear magnetic hyper-
shieldings can be better candidates than hypermagnetizabili-

ties for experimental detection of nonlinear magnetic re-
sponse. Nuclear magnetic resonance spectroscopy would
yield the best practical option.31,32

IV. Concluding Remarks and Outlook

The present study provides reasonable answers to the basic
questions (i-iv) raised in section II: (i) Perturbative CHF-
RPA approaches to nonlinear response neglecting contribu-
tions higher than fourth order in the applied magnetic field
may be insufficiently reliable for accurate estimates of
interaction energy in closed-shell compounds of a small size
such as BH and CH+, characterized by strong induced orbital
paramagnetism in the singlet ground state. The interpretation
of the highly nonlinear behavior, and the prediction of the
magnetic field values B⊥ ) Bm and B⊥ ) B⊥*, at which
transition from paramagnetism to diamagnetism would occur
in these systems, seems to require hypermagnetizability and
hypershielding tensors higher than the fourth-order XR�γδ and
ΣR�γδ

I in eqs 1-4. However, the CHF perturbation method
turns out to be useful for molecules as big as clamped C8H8,
for which satisfactory agreement with nonperturbative
calculations29,30 was obtained. (ii) A nonlinear response can
in principle be detected by measuring magnetic-field-
dependent magnetizabilities and hypermagnetizabilities via
a superconducting quantum interference device (SQUID). On
the other hand, according to previous studies,55 deviations

Figure 4. Response properties of the C8H8 molecule in a magnetic field normal to the molecular plane. Top left: Magnetic
interaction energy. Top right: Magnetic field induced at the carbon nucleus. Bottom left: Induced magnetic moment. Bottom
right: Magnetic field induced at the hydrogen nucleus.
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from a linear response would more easily be observed by
measurements of magnetic hypershielding at the nuclei via
NMR spectroscopy. The magnitude of calculated ΣR�γδ

I is
big in clamped C8H8, suggesting that compounds containing
this moiety may be potential candidates for detection. Cyclic
species with bigger area are best suited for experimental
observation of nonlinear contributions to a global molecular
property such as the interaction energy Wa - Wa

(0), eq 1, and
for determination of the critical field Bm, as Bm decreases
with system area. However, nonlinear response can in
principle be observed also in small-sized species by inves-
tigating local effects on nuclear hypershielding. (iii) Ac-
cording to the present study, correlation plays a major role,
and it dramatically affects the magnitude of calculated fourth-
rank response tensors. Therefore, reliable predictions of
hypermagnetizabilities and magnetic hypershielding at the
nuclei would only be obtained by theoretical methods
accounting for electron correlation. Furthermore, values of
X⊥ predicted via KT3 in BH and in CH+ are smaller than
CHF’s, which seems to imply that, at variance with (i),
perturbative approaches limited to cubic response may be
applicable at levels of theory taking electron correlation into
account. In these diatomics, Σ⊥

I calculated via DFT methods
for boron and carbon are also smaller than CHF’s. (iv)
Therefore, allowing for the previous points, the answer to
the question posed in the title is likely to be in the affirmative:
induced orbital paramagnetism of some closed-shell species
selected ad hoc can be controlled, and transition from
paramagnetic to diamagnetic behavior can probably be
observed in a terrestrial laboratory.

Eventually, highly excited hydrogen atoms and Rydberg
molecules in strong magnetic fields are a paradigm of a real
system, showing the signature of quantum chaos.84-86 These
species become chaotic as soon as the interaction of the
electron with the magnetic field is of the same order of
magnitude as the Coulomb interaction with the nucleus. The
classical trajectories of the atomic electron undergo a
transition from regularity to chaos as the field strength
increases. Therefore, the interplay of regularity and chaos
for highly excited Rydberg atoms and molecules in strong
magnetic fields would possibly make difficult, or even
preclude, in the majority of cases, experimental determination
of hypermagnetizabilities and nuclear hypershieldings of rank
higher than the fourth, and rationalization of nonlinear effects
beyond the cubic in the field strength, either via perturbation
theory or nonperturbative techniques, may become problematic.
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(62) Źaucer, M.; Pumpernik, D.; Hladnik, M.; Aźman, A. Chem.
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Abstract: An efficient implementation of the orbital-optimized second-order Møller-Plesset
perturbation theory (OO-MP2) within the resolution of the identity (RI) approximation is reported.
Both conventional MP2 and spin-component scaled (SCS-MP2) variants are considered, and an
extensive numerical investigation of the accuracy of these approaches is presented. This work is
closely related to earlier work of Lochan, R. C.; Head-Gordon, M. J. Chem. Phys. 2007, 126. Orbital
optimization is achieved by making the Hylleraas functional together with the energy of the reference
determinant stationary with respect to variations of the double excitation amplitudes and the molecular
orbital rotation parameters. A simple iterative scheme is proposed that usually leads to convergence
within 5-15 iterations. The applicability of the method to larger molecules (up to ∼1000-2000 basis
functions) is demonstrated. The numerical results show that OO-SCS-MP2 is a major improvement
in electronically complicated situations, such as represented by radicals or by transition states where
spin contamination often greatly deteriorates the quality of the conventional MP2 and SCS-MP2
methods. The OO-(SCS-)MP2 approach reduces the error by a factor of 3-5 relative to the standard
(SCS-)MP2. For closed-shell main group elements, no significant improvement in the accuracy
relative to the already excellent SCS-MP2 method is observed. In addition, the problems of all MP2
variants with 3d transition-metal complexes are not solved by orbital optimization. The close
relationship of the OO-MP2 method to the approximate second-order coupled cluster method (CC2)
is pointed out. Both methods have comparable computational requirements. Thus, the OO-MP2
method emerges as a very useful tool for computational quantum chemistry.

Introduction
Second-order many-body perturbation theory (MBPT2) oc-
cupies an important place in quantum chemistry. It is known

to greatly improve upon the results of Hartree-Fock (HF)
self-consistent field calculations and is the simplest wave
function based ab initio method. With the Mφller-Plesset
(MP) choice of the zero-order Hamiltonian,1,2 the method
is known as MP2 and has been widely used in computational
chemistry. The pertinent features of MP2 are well-known:3,4

a. MP2 is size consistent but not variational or even stationary
with respect to the wave function parameters.
b. MP2 recovers 80-90% of the basis set correlation energy.
c. MP2 scales as the fifth power of the molecular size, e.g.,
as O(N5). It is, therefore, intermediate in computational
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complexity between the HF theory (formally O(N4), practi-
cally O(N2)) and the more rigorous coupled cluster (CC)5,6

or coupled electron pair (CEPA)7-9 methods that require at
least an iterative O(N6) process, if only single and double
excitations from the HF reference determinant are included
(CCSD).
d. MP2 applied to closed-shell organic molecules often yields
fairly good structures, but energetics that are slightly worse
than with common density functionals.10

e. MP2 applied to open-shell molecules or to transition-metal
complexes yields distinctly less accurate results.11

f. With a HF reference, the first-order MP2 wave function
only contains double excitation amplitudes. Hence, MP2 does
not incorporate any orbital relaxation in the electron cor-
relation field.

A great deal of effort has been invested into making MP2
computationally affordable for general computational chem-
istry applications, and consequently, a number of highly
efficient MP2 approaches exist. Early on, Almlöf and Saebo
demonstrated that MP2 can be done in an integral direct
fashion, thus, avoiding the storage of O(N4) intermediates
on disk.12 Head-Gordon,13,14 Ahlrichs, and others have
reported modifications of the original direct algorithm. The
most efficient semidirect algorithm has probably been
developed by Pulay and co-workers and does not avoid
storage of O(N4) quantities on disk.15-19 The scaling of their
method is still O(N5), and it completely reproduces the
canonical result. Pulay and co-workers have reported very
large MP2 calculations with more than 2 000 basis functions
on the basis of a parallelized code.20

More recently, Ochsenfeld and co-workers have developed
a linear scaling integral direct MP2 code.21,22 Their strategy
is based on the Laplace transformation technique introduced
originally by Almlöf23 and discussed in detail by Häser and
Almlöf,24 Häser,25 and Scuseria.26 Microhartree accuracy
(relative to the canonical result) MP2 calculations with more
than 10 000 basis functions have been reported by Ochsenfeld
et al.,27 and a gradient code has also been developed along
the same lines.28

A number of efficient approximate MP2 treatments are
available. One of the first, and still widely used, approxima-
tions is the resolution of the identity (RI, equivalently density
fitting, DF) technique in which products of orbitals are
expanded in an auxiliary basis set.29 The RI approximation
to MP2 (RI-MP2) was first reported by Feyereisen et al.30

and was based on the results of Vahtras, Feyereisen, and
Almlöf, who showed that the RI technique performs best in
the Coulomb metric.31 Häser and Weigend optimized fitting
basis sets for RI-MP2 calculation for almost the entire
periodic table.32,33 They are optimally used together with
the segmented Gaussian basis sets developed by the Karlsru-
he group.32,34-36 The error introduced by the RI approxima-
tion is usually smaller than 0.1 mEh/atom and is very smooth,
such that it essentially cancels in chemically relevant energy
differences (typical RI errors in energy differences amount
to only 0.02 kcal mol-1). The RI technique leads to dramatic
speedups of MP2 calculations, in particular, if large basis
sets are used, the savings compared to the canonical
calculation amount to 1-2 orders of magnitude. It does,

however, not reduce the formal scaling that remains at the
O(N5) level. Nevertheless, the prefactor for RI-MP2 is so
small that, in the range up to at least 2 000 basis functions,
the preceding HF calculation still dominates the overall
computational effort.

Linear scaling approximate MP2 methods (as opposed to
the linear scaling full accuracy MP2 method pursued by
Ochsenfeld et al.) have been developed by a number of
groups. The most efficient of these have probably been
reported by Werner, Schütz and co-workers,37-41 who used
the correlation domain concept of Pulay and Saebo.42-44 The
LMP2 technique has been developed in combination with
the standard four index repulsion integrals and together with
the DF technique where further dramatic savings are
realized.37,38

A different approach has been pursued by Friesner and
co-workers, who have developed low-order scaling pseu-
dospectral techniques for MP2 calculations that are also
characterized by a small error and a low prefactor.45 We
have previously reported a hybrid technique where the HF
energy is obtained with a combination of RI and seminu-
merical integration and the MP2 energy is calculated within
the RI framework.46,47 The technique has been termed
RIJCOSX, and it has been shown that it leads to speedups
of about a factor of 15 for basis sets of triple-� quality
compared to standard RI-MP2 calculations.

Overall, it is clear that the development of MP2 has
reached a stage where MP2 energies can be obtained faster
than the HF energy itself for many chemically interesting
systems. Hence, the domain of applicability of MP2 is similar
to that of density functional theory (DFT). However, DFT
is still more frequently used than MP2, perhaps because it
proves to be more robust when applied to electronically
difficult situations, such as presented by open-shell systems
and by transition-metal complexes. Furthermore, widely used
quantum chemistry software packages still use non-RI, disk-
based MP2 algorithms so that the calculations remain very
time, memory, and disk space consuming.

Given the efficiency of the MP2 technique it seems natural
to look for extensions that improve the accuracy of the MP2
method while not worsening the computational scaling.
Perhaps the most successful of these techniques has been
the spin-component scaled MP2 method (SCS-MP2) previ-
ously proposed by one of us.48-50 SCS-MP2 has proven to
be a robust, efficient, and accurate technique when applied
to closed-shell main group systems. However, it has also
shown some deficiencies in the calculation of activation and
reaction energies involving open-shell molecules.9,51 A
modification of the SCS-MP2 idea that reduces the scaling
behavior to O(N4) has been proposed by Head-Gordon and
co-workers and has been termed SOS-MP2.52-54

A second successful extension of MP2 has been the
proposals of double-hybrid DFT (DHDF),55-57 and third-
order spin-component scaled perturbation theory.58 The
DHDFs have quickly gained popularity in the computational
chemistry community and, to some extent, combine the best
features of DFT and MP2 in terms of robustness, efficiency,
and accuracy.59 Because neither (SCS-)MP2 nor DHDF
methods are variational or even stationary, the formulation
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of analytic gradients is more involved,59 and hence, structure
optimizations on the basis of these methods are more
expensive than with conventional DFT.

One notorious problem with MP2 has been its inability to
calculate response properties since it ‘inherits’ the poor pole
structure of the HF method. This has been the motivation
for the introduction of second-order polarization propagator
approaches (SOPPA) that are broadly consistent with MP2
ground states.60,61 Another workaround has been the devel-
opment of a second-order CC method that has been termed
CC2 by its developers.62 Response properties of the CC2
method are readily formulated within the standard CC
hierarchy.63 CC2 has the same scaling as MP2 but requires
an iterative process. It is, hence, more expensive than MP2
itself. The accuracy of CC2 for ground-state energies and
for structures appears to be similar (or slightly worse) to
that of MP2.64,65 Thus, its main strength is the calculation
of response properties, such as excitation energies.66-69

Efficient techniques based on the RI approximation have been
developed by Hättig and co-workers and are available in the
TurboMole program.66,67,70 In addition, spin-component
scaling with emphasis on excited-state calculations has been
investigated in the CC2 framework as well.65 More recently,
Schütz and co-workers have reported local CC2 methods and
have combined them with DF and Laplace techniques.71,72

In the present work, we investigate another modification
of the MP2 technique that, in our opinion, suggests itself:
the orbital-optimized MP2 technique (OO-MP2). Thus, one
bases the calculation on the well-known Hylleraas func-
tional73 which is made stationary with respect to both
amplitude variations and orbital rotations. Hence, a fully
stationary energy, which simplifies the calculation of first-
order properties is obtained. Closely related ideas have
previously been pursued by Adamowicz and Bartlett,74-79

Head-Gordon and co-workers52,80 and Kollmar.81 In ref 52,
orbital optimization as been applied to the opposite-spin
scaled MP2 method (dubbed O2), and encouraging results
for atomization energies and vibrational frequencies of open-
shell systems have been reported. Noteworthy is the sub-
stantial reduction of spin contamination for small molecules
by the OO procedure. It was also pointed out that OO-MP2
is not bounded from below, and hence, in worst case the
energy could ‘run away’ to infinity. However, importantly,
the recent analysis of Head-Gordon and co-workers shows
that with orbital optimization methods, the stability of MP2-
type procedures is greatly enhanced by turning a first
derivative discontinuity problem into a second derivative
discontinuity problem.80 Hence, in or close to symmetry-
breaking situations orbital optimization will be essential.

In this paper, we perform additional detailed benchmark
studies of the orbital optimization technique and pursue the
original (and generally more accurate) spin-component
scaling technique as opposed to opposite-spin scaling that
has been pursued in ref 52. An efficient RI-based imple-
mentation of the OO-RI-MP2 and OO-RI-SCS-MP2 tech-
niques into the ORCA program package is reported, and both
approaches are characterized through detailed benchmark
calculations. The relationship between OO-MP2 and CC2
will be pointed out in the discussion.

The evaluation will focus on those cases where MP2 itself
(and also to some extent SCS-MP2) are more difficult to
apply. Thus, special attention will be devoted to open-shell
systems where spin contamination in the UHF reference often
significantly deteriorates the quality of the subsequent MP2
correction.9,82

A suitable test set is provided by the radical stabilization
energies (RSE, see also ref 83) of organic systems. Two sets
of radicals will be investigated. The first set has been
proposed in an extensive study by Zipse,84 who thoroughly
investigated trends in RSE for different types of substituents.
The second set of test cases is taken from the investigation
of Hemelsoet et al.85 They reported that dissociation energies
for C-H bonds in methyl groups connected to aromatic
hydrocarbons are particularly strongly affected by spin
contamination. All kinds of open-shell transition states
represent cases where significant spin contamination may
occur. As benchmark for transition states, the hydrogen
transfer barrier heights of the HTBH38 set from Zhao et al.
have been selected.86

In order to judge whether the orbital optimization approach
also provides an improvement over the well-established SCS-
MP2 method for closed shell systems, a restricted set of such
systems has also been included in the study. The test set
includes some prototypical main group reactions that have
already been investigated in the original parametrization of
the SCS-MP2 method.49 Further, ligand binding energies of
some transition-metal complexes will be studied. For these
systems, it is commonly claimed that second-order perturba-
tion methods are insufficient, and higher-order correlation
methods are required in order to reach quantitative ac-
curacy.87

1. Theory

Throughout this paper, indices i,j,k refer to occupied orbitals
in the reference determinant, a,b,c refer to virtual orbitals,
and p,q,r refer to general orbitals from either set, while P
and Q denote auxiliary basis functions. The MP2 energy can
be regarded as being stationary with respect to the MP2
amplitudes, since they can be considered as having been
optimized through the minimization of the Hylleraas
functional:88

Ĥ0 is the zero-order Hamiltonian, as proposed by Møller
and Plesset, Ψ0 is the reference determinant, Ψ1 is the first-
order wave function, and E1 ) EHF )〈ΨHF|Ĥ|ΨHF〉 is the
reference energy. The quantities t collectively denote the
MP2 amplitudes.

The fundamental idea of the OO-MP2 method is to not
only minimize the MP2 energy with respect to the MP2
amplitudes but also to minimize the total energy with respect
to changes in the orbitals. Since the MP2 energy is not
variational with respect to the MO coefficients, no orbital
relaxation due to the correlation field is taken into account.
If the reference determinant is poor, then the low-order
perturbative correction becomes unreliable. This may be
alleviated to a large extent by choosing better orbitals in the

EMP2 ) min
t

{2〈Ψ1|Ĥ|Ψ0〉 + 〈Ψ1|Ĥ0 - E0|Ψ1}〉 (1)
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reference determinant. Numerical evidence for the correctness
of this assumption will be presented below.

In order to allow for orbital relaxation, the Hylleraas
functional can be regarded as a functional of the wave
function amplitudes t and the orbital rotation parameters R
that will be defined below. Through a suitable parametriza-
tion, it becomes unnecessary to ensure orbital orthonormality
through Lagrange multipiers. The functional that we mini-
mize reads:

Ψ0 is the reference determinant. However, it does no
longer correspond to the HF determinant. Hence, the refer-
ence energy E0[R] ) 〈Ψ0[R]|Ĥ|Ψ0[R]〉 also changes during
the variational process and is no longer stationary with
respect to the HF MO coefficients. Obviously, E0[R] g EHF

since the HF determinant is, by construction, the single
determinant with the lowest expectation value of the full
Hamiltonian.

The reference energy is given as

The first-order wave function excluding single excitations
is

A conceptually important point is that Brillouin’s theo-
rem89 is no longer obeyed since the Fock matrix will contain
off-diagonal blocks. Under these circumstances, the first-
order wave function would contain contributions from single
excitations. Since the orbital optimization brings in all
important effects of the singles, we prefer to leave them out
of the treatment. Any attempt to the contrary will destroy
the convergence properties. We have, nevertheless, contem-
plated to include the single excitations perturbatively:

The perturbative nature of this correction would destroy
the stationary nature of the total energy and is, hence, not
desirable. Furthermore, results with inclusion of single
excitation contributions represent no improvement to the
results reported below. They will, therefore, not be docu-
mented below and, henceforth, be omitted from the OO-
MP2 method by default.

The explicit form of the OO-MP2 Hylleraas functional
employing the RI approximation (OO-RI-MP2) becomes

with

Here, {ψ} is the set of orthonormal molecular orbitals and
{η} denotes the auxiliary basis set. Fpq denotes a Fock matrix
element:

and it is insisted that the orbitals diagonalize the occupied
and virtual subspaces, respectively:

The MP2 like density blocks are

where the MP2 amplitudes in the case of a block diagonal
Fock matrix are obtained through the condition (∂LOO)/(∂tab

ij )
) 0:

The orbital changes are parametrized by an anti-Hermitian
matrix R and an exponential Ansatz:

The orbitals changes to second order are

Through this Ansatz it is ensured that the orbitals remain
orthonormal and that no Lagrangian multipliers need to be
introduced. The first-order expansion of the Fock operator
due to the orbital rotations is

The first-order energy change becomes (hpq ≡ 〈p|ĥ|q〉, gpqrs

≡ 〈pq|rs〉):

L{t, R} ) E0[R] + 2〈Ψ1|Ĥ|Ψ0〉 + 〈Ψ1|Ĥ0 - E0[R]|Ψ1〉
(2)

E0[R] ) ∑
i

〈i|h|i〉 + 1
2 ∑

ij

〈ij|ij〉 (3)

|Ψ1〉 )
1
4 ∑

ijab

tab
ij |Ψij

ab〉 (4)

Esingles
(2) ) -∑

ia

|Fia|2

εa - εi
(5)

Loo[t,R] ) ∑
i

〈i|ĥ|i〉 + 1
2 ∑

ij

〈ij|ij〉 + ∑
iaP

(ia|P)Γia
′P +

∑
ij

DijFij + ∑
ab

DabFab (6)

Γia
′P ) ∑

Q

VPQ
-1 ∑

jb

(Q|jb)tab
ij (7)

(ia|P) ) ∫ ∫ψi(r1)ψa(r1)
1

|r1-r2|
ηP(r2)dr1dr2 (8)

(P|Q) ) VPQ ) ∫ ∫ ηP(r1)
1

|r1 - r2|
ηQ(r2)dr1dr2 (9)

Fpq ) 〈p|ĥ|q〉 + ∑
k

〈pk|qk〉 (10)

Fij ) δijFii ) δijεi

Fab ) δabFaa ) δabεa
(11)

Dij ) -1
2 ∑

kab

tab
ik tab

jk

Dab )
1
2 ∑

ijc

tac
ij tbc

ij
(12)

tab
ij ) - 〈ij|ab〉

εa + εb - εi - εj
(13)

cnew)cold exp(R)

R )( 0 Ria

-Ria 0 ) (14)

exp(R)|i〉 ) |i〉 + ∑
a

Rai|a〉 - 1
2 ∑

jb

RbiRbj|j〉 + ...

exp(R)|a〉 ) |a〉 - ∑
i

Rai|i〉 -
1
2 ∑

jb

RajRbj|b〉 + ...

(15)

Fpq[R] ) Fpq[0] + Rpq
(1) + ∑

r

RrpFrq[0] + RrqFpr[0] (16)

Rpq
(1) ) ∑

kc

Rck{〈pc|qk〉 + 〈pk|qc〉} (17)

J. Chem. Theory Comput., Vol. 5, No. 11, 2009 3063



The condition for the energy functional to be stationary,
with respect to the orbital rotations, (∂LOO[t,R]/∂Rai ) 0)
yields the expression for the orbital gradient and, hence, the
expression for the OO-RI-MP2 Lagrangian.

The goal of the orbital optimization process is to bring
this gradient to zero. There are obviously many ways to
achieve this. In our experience, the following simple
procedure is essentially satisfactory. We first build a matrix
B in the current MO basis with the following structure:

where ∆ is a level shift parameter. The occupied/occupied
and virtual/virtual blocks of this matrix are arbitrary, but their
definition has a bearing on the convergence properties of
the method. The orbital energies of the block diagonalized
Fock matrix appear to be a logical choice. If the gradient is
zero, then the B matrix is diagonal. Hence, one obtains an
improved set of orbitals by diagonalizing B. In order to
accelerate convergence, a standard DIIS scheme is used.90,91

However, in order to carry out the DIIS extrapolation of the
B-matrix, it is essential that a common basis is used that
does not change from iteration to iteration. Since the B matrix
itself is defined in the molecular orbitals of the current
iteration, we choose as a common set of orthonormal orbitals
the MOs of the HF calculation. The extrapolation is carried
out in this basis, and the extrapolated B matrix is transformed
back to the current set of MOs prior to diagonalization.
Obviously, the same strategy can be used for orbital
optimization in any method for which an orbital gradient is
available.

For well-behaved cases this simple scheme converges in
5-10 iterations. Transition metals and more complicated
molecules may require up to 20 iterations and level shifting
in order to achieve convergence.

It has been argued by Rice et al.92 and by Scuseria and
Schaefer,93 that one would obtain a Newton-Raphson-
like scheme by regarding gai as an electronic perturbation

and solve a set of coupled-perturbed HF equations in order
to obtain new orbital rotation parameters. We have
implemented this scheme and found it to be not competi-
tive with the simple DIIS scheme. Each orbital update
requires the expensive solution of the CPHF equations.
Yet, the convergence is no better or worse than that of
the DIIS scheme. This makes sense, the method is not a
true Newton-Raphson procedure, because the SCF Hes-
sian is used in place of the much more elaborate OO-
MP2 electronic Hessian. The true Newton-Raphson
method requires the exact second derivatives of the total
energy with respect to the orbital rotation parameters. The
CPHF method simply contains the second derivative of
the energy of the reference determinant with respect to
these rotations and, hence, misses substantial contributions
that come from the dynamic correlation part. Since the
Hessian is not the exact one, quadratic convergence does
not occur. In fact, convergence is at best linear, and the
scheme is overall too expensive for large-scale applications.

To illustrate this point, the performance of the (quasi)
Newton-Raphson procedure is compared to the DIIS scheme
for the glycine molecule in the TZVPP basis and the
TZVPP/C auxbasis (411 basis functions, 986 auxiliary basis
functions). The time for the DIIS extrapolation is negligible
compared to the total time of the iterative OO-MP2
procedure. By contrast, the Newton-Raphson procedure
amounts to about 20% of the total OO-MP2 calculation time.
Whereas the DIIS extrapolation takes about 1 s per OO-
MP2 cycle, the solution of the CPSCF equations takes about
680 s per cycle (10 cycles for energy convergence to 10-7

Eh are required in both schemes).

We note, in passing, that upon convergence the sum of
the matrix D and the density of the reference determinant
PµV ) ∑icµicVi form the true one-particle density matrix of
the OO-MP2 approach that can be used for property or
gradient calculations. This will be investigated in detail
elsewhere.

2. Implementation and Timings

The OO-RI-MP2 and OO-RI-SCS-MP2 methods have been
implemented in closed-shell and spin-unrestricted versions
into a development version of the ORCA program package.
The implementation is based on the previously reported
parallelized gradient code for RI-MP2 and DHDF methods.59

Since the details have been documented in the previous
publication, we only briefly discuss the timings for a
medium-sized test case, the cocaine molecule with the TZVP
basis set (43 atoms, 544 basis functions, 1 025 auxiliary
functions).

The RHF calculation takes 105 min and converges in 15
cycles to an accuracy of 10-9 Eh (single CPU of a MacPro
3.1; operating system OS X 10.5, 2 quad-core Intel XEON
3.0 GHZ CPUs that have 12 MB level 2 cache). The RI-
MP2 calculation takes only 2 min. The effort for the OO-
RI-MP2 method is obviously higher. In addition to its
iterative nature, the necessary terms for the orbital gradient
must be calculated, which involves the calculation of the
response operator (eq 17), the unrelaxed density (eq 12), and

LOO[t, R] ) ∑
ic

Rci(hci + hic) +
1
2 ∑

ijc

Rci(gcjij + gijcj)+

Rcj(gicij + gijic)

+ 2 ∑
iacP

Rci(ac|P)Γia
′P - 2 ∑

ikaP

Rak(ik|P)Γia
′P

- 2 ∑
ij

Dij(Rij
(1) + ∑

c

(RciFcj + RcjFic))

+ 2 ∑
ab

Dab(Rab
(1) - ∑

c

(RakFkb + RbkFak))

(18)

∂LOO[t, R]

∂Rai
≡ gai ) 2Fai + 2 ∑

j

DijFaj-

2 ∑
b

DabFib + R(1)(D)ai

+ 2 ∑
cP

(ac|P)Γia
′P - 2 ∑

kP

(ik|P)Γia
′P

(19)

Bij ) δijFii

Bab ) δab(Faa + ∆)
Bai ) Bia ) gai

(20)
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the two external/internal contributions (eq 19), all of which
are expensive.

In this example, there are 16 orbital iterations required to
converge the energy to about 10-9 Eh, which takes 12.2 h.
No single term is dominating the calculation time. The
construction of the Fock (13%) and response (16%) operators
as well as the calculation of the (ia|jb) integrals (15%), the
virtual part of the Lagrangian (15%), the internal part of the
density (13%) and the calculation of the three-index, two
particle density (15%) all take about the same amount of
time. The remaining time goes, in about equal parts, to the
three-index integral transformation, the virtual part of the
density as well as the internal part of the Lagrangian.

Thus, the effort for the total calculation is substantially
higher than that for a RI-MP2 calculation (by a factor
typically 8-12), but the calculations are feasible even for
larger molecules. As will be explained in a different context,
the computational effort can be significantly reduced by
additional approximations.

In order to illustrate that the effort for a RI-OO-MP2
calculation is still substantially lower than that of a CCSD
calculation, we have compared the timings for the tyrosine
molecule with the TZVP basis set (313 basis functions). We
emphasize that the ORCA CCSD program has state of the
art performance such that the comparison is fair. The time
required to complete the OO-RI-MP2 calculation is 5 353 s,
while the CCSD calculation takes 66 299 s. This shows that
the effort for orbital-optimized MP2 calculations is inter-
mediate between that of CCSD and that of MP2 (RI-MP2:
1 016 s including SCF). Also, the computational scaling for
MP2 (with or without orbital optimization) is O(N5) while
CCSD is well-known to scale as O(N6).

3. Calculations

3.1. Computational Details. Unless otherwise noted, all
geometries were optimized without constraints at the
B3LYP94-97/TZVP35 level using the TurboMole program
suite (Version 5.9).98,99 For the larger systems in the RSE
set, an empirical dispersion correction100-102 was added
(B3LYP-D). The transition-metal complexes were optimized

using RI-BP8695,103/TZVP together with matching auxiliary
basis sets104 and TurboMole multigrid ‘m4’.105 Single point
energies were computed at each given level of theory at the
optimized geometries. The exception are the systems from
the HTBH38 test set that were taken in an unchanged way
from the literature.86 B2PLYP-D106,107 BDEs for the poly-
cyclic aromatic hydrocarbons were also calculated with the
TurboMole program. In these calculations, the TZVPP basis
was used together with matching auxiliary basis sets and RI
approximation for the Coulomb-exchange part108 as well as
for the second-order perturbation part.

OO-MP2 and OO-SCS-MP2 calculations were carried out
with a development version of the ORCA program system.109

As explained above, the RI approximation was used through-
out together with the auxiliary basis sets of Weigend et al.108

Reaction energies, barrier heights, and RSE are based on
the QZVP basis set.34 All other calculations employed the
TZVPP basis set.

Ligand dissociation energies for the carbonyl systems were
computed with the RICC program developed in Münster,
Germany, at the SCS-MP358/TZVPP level of theory (or
equivalently also with the ORCA program).

Reference data for the RSE were calculated at the
CCSD(T) level together with the standard two-point basis
set extrapolation scheme of Helgaker, Klopper, and co-work-
ers.110,111 For the extrapolation the Dunning basis sets, cc-
pVDZ and cc-pVTZ are applied.112-114 These calculations
were carried out using MOLPRO 2006.115

All open-shell species were treated in the spin-unrestricted
formalism.

3.2. Reaction Energies. In order to assess the perfor-
mance of OO-SCS-MP2 for thermochemical applications, a
set of reactions constructed from the molecules of the G2
set was investigated.4 In our opinion, this data are more
relevant for chemical applications than atomization energies,
as discussed in detail in ref 49. The present test set is a subset
of the one that has been used to parametrize SCS-MP2. Only
transition states and protonation reactions have been omitted
but will be discussed below. Furthermore, reactions involving
ozone are omitted as well due to the multireference character
of O3.

It is evident from the results in Table 1 that OO-MP2 is
not an improvement over MP2 itself. The mean average
deviations of both methods are almost identical, but for OO-
MP2, the error range is even larger than that of MP2.
Interestingly, the errors of MP2 and OO-MP2 are almost
always of opposite signs. Hence, it appears that OO-MP2 is
overcorrecting the MP2 results. Turning now to the spin-
component scaled results, Table 1 demonstrates that OO-
SCS-MP2 improves upon the already excellent results of
SCS-MP2. The mean absolute deviation (MAD) drops from
2.5 to 2.2 kcal mol-1. However, at the same time, the error
range increases. It was hypothesized that this problem might
be alleviated by reoptimization of the two SCS-MP2 scaling
parameters. Thus, the calculations were repeated for the entire
test set for a collection of systematically varied scaling
parameters. The statistical results of this investigation are
collected in Table 2. It is apparent that the achievable
improvements through reoptimization of the SCS-MP2

Figure 1. Structure of the cocaine molecule used in the
benchmark calculations (43 atoms, 976 basis functions with
TZVPP, 976 and 1025 auxiliary functions).
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parameters are marginal. Thus, we prefer to keep the method
as simple as possible and to keep the original SCS-MP2
scaling parameters also for OO-SCS-MP2. All remaining
calculations have been performed in this way.

3.3. Transition-Metal Complexes. As a more challenging
test, the performance of OO-SCS-MP2 is tested for a
selection of organometallic transition-metal complexes. In
transition-metal carbonyls, the metal-ligand bonds are still
strong but are nevertheless difficult to describe with high
accuracy by wave-function methods. Experience indicates
that at least third-order perturbation contributions must be
accounted for in order to correctly treat these bonds.87 Hence,
they provide a particularly challenging test set for OO-SCS-
MP2.

Our results obtained with the SCS-MP3,58 SCS-MP2 and
OO-SCS-MP2 methods in conjunction with the TZVPP basis
set are shown in Table 3. The CCSD(T) data serve as the
reference in this case. They are extremely well reproduced
by SCS-MP3, that is, in essentially quantitative agreement.
The otherwise very successful LPNO-NCPF/1 method, on

Table 1. Reaction Energies for Closed-Shell Moleculesa

deviation

reaction refb SCS-MP2c OO-SCS-MP2c MP2 OO-MP2

1 F2 + H2 f 2 HF -132.9 -5.9 -2.6 -10.0 7.8
2 F2O + H2 f F2 + H2O -67.5 -4.5 -1.3 -4.9 1.1
3 H2O2 + H2 f 2 H2O -85.9 -3.9 -2.2 -5.8 4.9
4 CO + H2 f CH2O -3.9 -1.3 -0.7 -1.6 2.1
5 CO + 3 H2 f CH4 + H2O -62.3 -2.3 0.1 -4.1 3.7
6 N2 + 3 H2 f 2 NH3 -36.7 0.0 2.2 -2.1 2.0
7 1CH2 + H2 f CH4 -128.2 -3.9 -3.9 -7.6 9.4
8 N2O + H2 f N2 + H2O -80.2 0.2 6.1 3.5 -11.3
9 HNO2 + 3 H2 f 2 H2O + NH3 -119.8 -6.8 1.0 -10.5 2.7

10 C2H2 + H2 f C2H4 -48.8 1.4 2.1 1.6 -1.8
11 CH2dCO + 2 H2 f CH2O + CH4 -42.9 0.2 1.9 1.7 -3.6
12 BH3 + 3 HF f BF3 + 3 H2 -94.0 2.9 1.5 0.9 0.2
13 benzene + 3 H2 f cyclohexane -69.4 2.7 2.3 4.1 -3.1
14 HCO-OH f CO2 + H2 1.2 -1.5 -3.0 -1.6 2.8
15 CO + H2O f CO2 + H2 -6.7 -1.8 -4.3 -3.5 7.2
16 C2H2 + HF f CH2- CHF -26.9 2.7 2.6 3.2 -2.6
17 HCN + H2O f CO + NH3 -12.7 2.7 2.4 3.5 -3.6
18 HCN + H2O f HCO-NH2 -21.0 1.3 0.6 0.3 1.9
19 HCONH2 + H2O f HCOOH + NH3 0.4 1.0 0.6 1.3 -1.0
20 HCN + NH3 f N2 + CH4 -38.3 0.4 0.4 1.5 -1.9
21 CO + CH4 f CH3-CHO 4.2 -1.2 -1.0 -2.4 3.6
22 N2 + F2 f N2F2 17.6 3.8 3.6 0.6 1.5
23 BH3 + 2 F2 f BF + 3 HF -246.1 -6.4 -0.9 -15.2 10.8
24 2 BH3 f B2H6 -43.0 1.4 1.0 -1.8 4.5
25 2 1CH2 f C2H4 -198.4 -7.5 -8.3 -14.3 1 8.1
26 CH3-O-NO f CH3-NO2 -3.1 -3.4 -2.1 -5.5 3.3
27 CH2dC f C2H2 -44.6 -5.9 -5.8 -8.2 8.5
28 allene f propyne -1.5 -2.7 -2.6 -3.2 3.1
29 Cyclopropene f propyne -23.9 -0.2 -0.7 0.1 0.1
30 oxirane f CH3CHO -26.8 0.9 0.2 1.6 -0.9
31 vinyl alcohol f CH3CHO -10.1 -0.1 -0.6 -1.0 1.5
32 cyclobutene f 1,3- butadiene -11.6 1.3 0.9 2.3 -2.2
33 C2H4 + 1CH2 f C3H6 -106.5 -5.9 -5.6 -11.6 1 3.8
34 C2H2 + C2H4 f cyclobutene -31.5 -0.5 0.4 -2.8 3.3
35 cis-1,3 butadiene + C2H4 f cyclohexene -44.4 6.7 6.4 2.5 -1.5
36 3 C2H2 f benzene -151.1 0.2 2.5 -7.3 7.7
37 3CH2 f

1CH2 9.9 -1.7 -1.2 4.5 -5.0
38 2 NH3 f (NH3)2 -3.1 0.5 0.4 -0.1 0.2
39 2 H2O f (H2O)2 -5.2 0.5 0.4 0.1 0.2
40 2 HF f (HF)2 -4.7 1.5 1.4 0.1 0.1

MD -0.9 -0.1 -2.3 -2.2
MAD 2.5 2.2 4.0 4.1
∆min-max 14.2 14.7 19.7 29.4

a Given are the reference values (ref) and the deviations (E(method) - E(reference)) for SCS-MP2 and OO-SCS-MP2. The mean
deviation (MD), the mean absolute deviation (MAD), and the error range (∆min-max ) maximum deviation - minimum deviation) are also
listed. All energies are in kcal mol-1. b QCISD(T) with QZVP basis for heavy atoms (TZVP for H) on B3LYP/TZVP geometries taken from ref
49. c With QZVP basis set on B3LYP/TZVP geometries.

Table 2. Statistical MD and MAD (in parentheses) Values
for the Reaction Set for Different Combinations of Same
Spin (css) and Opposite Spin (cos) Scaling Parameters in
OO-SCS-MP2a

cos

css 1.15 1.20 1.25

0.30 0.0 (2.0) 0.0 (2.1) 0.0 (2.3)
0.35 -0.2 (2.1) -0.2 (2.2) -0.1 (2.3)
0.40 -0.3 (2.1) -0.3 (2.3) -0.3 (2.4)

a All values in kcal mol-1.

3066 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Neese et al.



the other hand, systematically underestimates all binding
energies by 6-9 kcal/mol. Turning to the SCS-MP2 and OO-
SCS-MP2 data, it is evident from the data in Table 3 that
orbital optimization is not able to improve the description
of the complex electronic situation in these transition-metal
carbonyl complexes. Given the success of the SCS-MP3
method, the most likely explanation is that it is necessary to
correctly account for electron pair-pair couplings that are
invariably neglected in any MBPT2 variant. Hence, the results
of OO-SCS-MP2 and SCS-MP2 are of about the same quality
and both show significant deviations from the reference values,
in particular for Ni(CO)4. Comparison to the nonscaled MP2

and OO-MP2 shows that spin-component scaling brings in a
substantial improvement, which is, however, not enough to
render the results chemically accurate. The smallness of the test
set does not allow for a statistical evaluation.

3.4. Barrier Heights. In the next step of the evaluation,
barrier heights from the HTBH38 benchmark set are
considered. As has recently been pointed out by Zheng et
al.,116 reaction barriers are particularly challenging for MP2
methods. Our results are collected in Table 4. Note that, for
two of the reactions, reactant and product are identical
(entries 9, 10 and 37, 38). They are listed only once but are
considered individually for the statistical evaluations in order

Table 3. Ligand Dissociation Energies De (in kcal mol-1) Based on BP86/TZVPP Geometriesa

De

dissociation reaction CCSD(T) LPNO-NCPF/1 SCS-MP3 OO-SCS-MP2 SCS-MP2 OO-MP2 MP2

[Cr(CO)6] f [Cr(CO)5] + CO 42.0 34.9 41.6 44.1 50.3 59.2 46.8
[Cr(CO)5(C2H4)] f [Cr(CO)5] + C2H4 30.2 23.9 28.1 39.6 36.3 46.0 46.8
[Cr(CO)5(CS)] f [Cr(CO)5] + CS 74.4 65.6 76.4 89.8 89.7 100.9 107.9
[Ni(CO)4] f [Ni(CO)3] + CO 29.4b 22.9 22.1 61.2 43.9 55.6 89.1

a For the single point energies the TZVPP basis set was also applied. b The T1 diagnostic is 0.031 for both Ni(CO)3 and Ni(CO)4.

Table 4. Barrier Heights for Hydrogen Transfer Reactionsa

deviation

reaction litb SCS-MP2c OO-SCS-MP2c MP2 OO-MP2

1 H + HCl f TS1 5.7 3.7 2.5 5.1 5.7
2 H2 + Cl f TS1 8.7 1.8 0.9 -0.1 -2.1
3 OH + H2 f TS2 5.1 4.9 1.1 2.3 -2.9
4 H2O + H f TS2 21.2 8.0 4.3 10.1 7.7
5 CH3 + H2 f TS3 12.1 2.2 1.0 0.8 -1.0
6 CH4 + H f TS3 15.3 4.0 2.6 4.4 5.0
7 OH + CH4 f TS4 6.7 4.4 -0.4 1.2 -4.8
8 H2O + CH3 f TS4 19.6 5.6 1.3 5.4 -0.2
9/10 H + H2 f TS5 9.6 3.7 2.9 3.5 4.5
11 OH + NH3 f TS6 3.2 7.3 -0.3 3.7 -5.7
12 H2O + NH2 f TS6 12.7 8.3 1.1 6.0 -3.1
13 HCl + CH3 f TS7 1.7 2.3 0.8 1.1 -1.0
14 Cl + CH4 f TS7 7.9 2.2 0.7 -0.5 -2.8
15 OH + C2H6 f TS8 3.4 5.4 0.2 2.4 -4.6
15 H2O + C2H5 f TS8 19.9 6.0 1.5 6.0 0.0
16 F + H2 f TS9 1.8 4.6 1.7 3.1 -1.2
17 HF + H f TS9 33.4 7.5 5.1 11.7 10.5
18 O + CH4 f TS10 13.7 5.8 1.9 3.8 -0.4
19 OH + CH3 f TS10 8.1 5.5 2.3 4.0 0.4
20 H + PH3 f TS11 3.12 2.8 2.0 2.5 3.4
21 H2 + PH2 f TS11 23.2 3.3 3.0 1.4 0.5
22 H + OH f TS12 10.7 6.8 3.5 6.9 5.4
23 H2 + O f TS12 13.1 5.2 1.5 3.0 -1.4
24 H + H2S f TS13 3.5 3.5 2.5 3.2 4.0
25 H2 + HS f TS13 17.3 2.1 1.4 -0.6 -2.2
26 O + HCl f TS14 9.8 8.7 2.6 6.1 -1.8
27 OH + Cl f TS14 10.4 8.3 3.0 4.7 -2.8
28 NH2 + CH3 f TS15 8.0 5.1 2.4 3.1 0.0
29 NH + CH4 f TS15 22.4 3.3 0.4 1.9 -1.4
30 NH2 + C2H5 f TS16 7.5 6.2 3.6 4.1 1.0
31 NH + C2H6 f TS16 18.3 5.2 1.9 3.4 -0.3
32 C2H6 + NH2 f TS17 10.3 4.4 1.2 1.4 -2.8
33 C2H5 + NH3 f TS170 17.4 4.1 1.2 2.7 -0.8
34 NH2 + CH4 f TS18 14.5 2.7 -0.2 -0.2 -3.8
35 NH3 + CH3 f TS18 17.8 3.1 0.3 1.8 -1.6
37/38 s-trans cis-C5H8 f TS19 38.4 1.5 1.4 -2.8 -5.2

MD 4.6 1.7 3.1 -0.2
MAD 4.6 1.8 3.5 2.9
∆min-max 6.9 5.5 14.5 16.2

a Given are the reference values from the literature and the deviations (∆E‡(method) - ∆E‡(reference)) for SCS-MP2 and OO-SCS-MP2.
The mean deviation (MD), the mean absolute deviation (MAD), and the error range (∆min-max) are listed at the bottom. All energies in kcal
mol-1. b Best estimates from experiment and theory taken from ref 49. c With QZVP basis set on geometries taken from ref 49.

J. Chem. Theory Comput., Vol. 5, No. 11, 2009 3067



to maintain consistency with the previous evaluations for
this benchmark test.49

It becomes evident from the data in Table 4 that OO-SCS-
MP2 provides particularly accurate results for these barriers.
The MAD from the reference values decreases from 4.6 to
only 1.7 kcal mol-1 in comparison with SCS-MP2. Interest-
ingly, the comparison of MP2 and OO-MP2 reveals that the
improvement by orbital optimization alone is rather moderate.
Hence, it is the combination of orbital optimization and spin-
component scaling that renders the method accurate. The
results for OO-SCS-MP2 are almost as good as those
delivered by the previously evaluated CEPA methods that
are computationally much more demanding9 (unless efficient
approximations are employed).117 In fact, the MAD of 1.7
kcal/mol for OO-SCS-MP2 is of the same size as what is
obtained with the best current (and highly parametrized)
density functionals and is much better than B3LYP, which
provides an MAD of about 4 kcal/mol-1 for this bench-
mark.118 Interestingly, OO-SCS-MP2 and SCS-MP2 them-
selves tend to overestimate barrier heights, especially when
one of the reactants is a hydrogen atom, while the corre-
sponding back reaction barriers are described better.

3.5. Radical Stabilization Energies. We now turn to the
systems that the OO-SCS-MP2 method was mainly designed
for. These are the reactions of radical species. In the
evaluation reactions of the general homodesmotic type:

are considered. If the reaction is exothermic, the rest R stabilizes
the radical better than a methyl group. For our investigation,
we took the set of R groups, as previously proposed in the study
of Zipse.84 However, we believe that it is desirable to obtain
more rigorous reference values than those provided by the earlier
restricted open-shell MP2 (ROMP2) calculations.84 Therefore,
we have turned to CCSD(T) calculations in combination with
basis set extrapolation. For simplicity and since we only
compare theoretical data among each other, ZPVE and thermal
effects were not considered. The new reference data together
with the results of OO-SCS-MP2 and SCS-MP2 calculations
are collected in Table 5.

As in the case of reaction barriers, it is observed that OO-
SCS-MP2 drastically improves upon the results of SCS-MP2.
The MAD value drops by about a factor of 3 from 4.7 to
1.5 kcal mol-1, and at the same time, the error range is
reduced from 43.4 kcal mol-1 (SCS-MP2) to only 16.3 kcal
mol-1 (OO-SCS-MP2), again a factor of 3. In addition, in
this case OO-MP2 also improves substantially upon MP2.
It is, in fact, the most accurate method for this test set.

For judging the effect of spin contamination, the <S2>
values for the UHF reference are also listed in Table 5.
Clearly, if the reference suffers from spin contamination, then
the SCS-MP2 results are strongly biased. OO-SCS-MP2, on
the other hand, decreases this effect to a remarkable extent.
This is in agreement with the results of ref 52. Unfortunately,
we have not yet implemented the calculation of the <S2>
value on the basis of OO-SCS-MP2, which would allow us
to judge the precise extent of residual spin contamination.
Nevertheless, the behavior of SCS-MP2 versus OO-SCS-
MP2 is visualized in Figure 2.

3.6. Bond Dissociation Energies in Polycyclic
Aromatic Hydrocarbons. Encouraged by the performance
of OO-SCS-MP2 for the RSE test set, we have turned to
study bond dissociation energies in polcyclic hydrocarbons
as another challenging application of the method. Here, it is
demonstrated that OO-SCS-MP2 can be applied to larger
systems in conjunction with sufficiently saturated basis sets.

In the test reactions, the C-H bond in a methyl group is
broken which leads to a benzyl type radical (Figure 3). The
design of the test set goes back to an investigation of
Hemelsoet et al.,85 who reported that these systems signifi-
cantly suffer from spin contamination.

The results of our computations are collected in Table 6.
In agreement with the results of Hemelsoet et al.,85 very large
deviations from the expected <S2> value of 0.75 are found.
This leads to such a large bias for the SCS-MP2 results that
these are rendered essentially useless. Again, however, OO-
SCS-MP2 yields greatly improved the results. However, they
cannot be directly compared to the results of ref 85 because,
in the previous study, vibrational and thermal corrections
were added, and a basis set of only double-� quality was
used. Since this puts some doubt on the accuracy of the
results in ref 85, we also computed B2-PLYP-D values for
these reactions. These should also be much less influenced
by spin contamination because the Kohn-Sham determinant
is usually much less prone to symmetry breaking and spin
contamination than that of the UHF wave function. Hence,
the results are considered to be more reliable. Indeed, the
corresponding <S2> values in Table 6 deviate less strongly
from 0.75 but still indicate significant problems with the
reference.

On an absolute scale both methods, OO-SCS-MP2 and
B2-PLYP-D, differ by about 5 kcal mol-1, but the trends
are the same. There is a slight increase in BDE of 1 kcal
mol-1 from 5-13 to 5-14, then a larger increase of 10 kcal
mol-1 to 5-1, and the bond in 5-2 is less stable by about
2 kcal mol-1. The step from 10-14 to 10-1 leads to an
increase of about 6 kcal mol-1 in BDE, and there is almost
no difference between 10-1 and 10-12. Both methods are
in qualitative agreement with the findings of Hemelsoet et
al. We note, in passing, that their B2-PLYP results do not
show the same trend. The reason for this discrepancy is not
clear.

4. Discussion

In this work, the orbital-optimized MP2 method has been
developed into a useful tool for computational quantum
chemistry. The motivation for the work is to improve upon
the results of the second-order many-body perturbation theory
through incorporation of orbital relaxation effects to all
orders, while maintaining acceptable computational ef-
ficiency. This goal is clearly reached by the OO-MP2 method
that, as we have demonstrated here, can be applied in
reasonable turnaround times to molecules of significant size.
The effort for a OO-RI-MP2 calculation is nevertheless
substantially higher than that of a RI-MP2 (RI-SCS-MP2)
calculation due to its iterative nature and to the extra terms
required to obtain the orbital gradient. The ratio for a
reasonably large calculation has been found to be 8-12 in

R-H + CH3· f R· + CH4 (21)
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this work. As will be developed in detail elsewhere, this ratio
improves in analytic gradient calculations where all of these
terms also have to be calculated for RI-MP2.

The results of an extensive numerical evaluation of the
OO-MP2 and OO-SCS-MP2 methods indicate that they do
drastically improve the accuracy (and stability) of the parent
nonorbital-optimized methods in electronically difficult situ-
ations. The errors typically decrease by a factor of 3 to 5.
This is particularly evident for open-shell species and
transition states and less so for transition-metal complexes.
For standard main group closed-shell species, the results of
orbital-optimized and conventional MP2 methods is, how-
ever, comparable, and it is questionable whether the extra
effort for the orbital optimization is well invested. The

consistent improvement offered by spin-component scaling
in the conventional MP2 method persists in the OO-MP2
approach, and it was found in this work that very little, if
anything, can be gained through reoptimization of the SCS-
MP2 same-spin and opposite-spin scaling parameters.

Thus, there is a well-defined domain of applicability for
OO-(SCS)-MP2 that is intermediate between the conven-
tional MP2 and the more rigorous coupled-cluster ap-
proaches. The cost for OO-(SCS)-MP2 is also intermediate
between these extremes. In many cases, the much better
orbitals delivered by the OO-(SCS)-MP2 method may also
be advantageous for coupled cluster investigations, in
particular for open-shell transition-metal complexes. This
subject will be investigated elsewhere.

Table 5. Reference Radical Stabilization Energies Together with the Deviations (RSE(method) - RSE(reference)) for
SCS-MP2 and OO-SCS-MP2 are given in kcal mol-1 a

deviation

substituent refb SCS-MP2c OO-SCSMP2c MP2 OO-MP2 <S2>d

·CH2-C6H5 -15.2 22.9 0.7 24.4 0.5 1.335
CH2dC · -CN 1.9 30.1 0.8 27.3 -1.1 1.385
·CF)CH2 6.8 7.8 0.5 6.0 -0.7 0.934
·CH2-CCl3 7.4 4.2 1.5 7.1 4.6 0.825
·CH2-CF2-CH3 0.1 0.5 0.1 0.5 -0.1 0.762
·CH2-CF3 1.4 0.5 0.1 0.5 -0.1 0.762
·CH2-CH2-Cl -3.2 1.4 0.4 1.4 0.2 0.774
·CH2-CH2-F -1.3 0.4 -0.1 0.3 -0.3 0.763
·CH2-CH2-OH -1.8 0.6 0.2 0.4 -0.1 0.764
·CH2-CH)CH2 -17.5 6.9 1.0 6.0 0.1 0.951
·CH2-CHO -10.0 9.7 0.7 9.6 0.2 0.927
·CH2-CN -8.6 11.6 0.7 10.9 0.0 0.938
·CH2-CO-CH3 -8.7 8.5 0.6 8.4 0.2 0.909
·CH2-CO-NH2 -6.3 1.9 -0.1 1.8 -0.3 0.793
·CH2-CO-NH-CH3 -6.3 4.0 -0.2 1.6 -0.5 0.786
·CH2-CO-O-CH3 -6.6 2.5 0.0 2.4 -0.3 0.802
·CH2-CO-OH -6.4 2.7 0.1 2.6 -0.1 0.807
·CH2-CH(-CH2)2 -3.0 0.6 0.1 0.5 -0.1 0.763
·CH2-F -3.9 1.0 0.2 0.3 -0.8 0.762
·CH2-NH2 -12.0 0.8 -0.4 0.1 -1.4 0.763
·CH2-NH3

+ 4.7 0.6 0.3 0.2 -0.1 0.763
·CH2-NH-CH3 -12.6 0.9 -0.5 0.3 -1.5 0.764
·CH2-NH-CHO -11.1 1.7 0.2 1.0 -0.7 0.777
·CH2-NH-OH -8.6 1.8 -0.4 0.9 -1.7 0.772
·CH2-N(-CH3)2 -12.8 1.2 -0.5 0.6 -1.3 0.764
·CH2-NO2 -3.3 2.3 0.1 1.6 -0.7 0.787
·CH2-O-CF3 -3.9 1.4 0.4 0.7 -0.4 0.764
·CH2-O-CH3 -2.7 0.9 0.1 0.4 -0.5 0.763
·CH2-O-CHO -5.9 1.3 0.4 0.6 -0.6 0.765
·CH2-CO-O-CH3 -6.2 1.5 0.3 0.7 -0.8 0.766
·CH2-OH -4.2 0.9 0.2 0.2 -0.6 0.762
·CH2-PH3

+ 0.7 0.2 0.1 0.5 0.3 0.762
·CH2-S-CH3 -10.8 1.4 -0.7 0.7 -1.8 0.773
·CH2-S-CHO -8.4 1.6 -0.5 1.0 -1.7 0.776
·CH2-SH2

+ 2.7 0.5 0.0 0.2 -0.4 0.765
·CH2-SH -9.4 1.1 -0.6 0.5 -1.6 0.772
·CH2-SO-O-CH3 0.0 0.9 -0.4 0.9 -0.9 0.763
·CH2-SO-CH3 -2.9 1.2 -0.3 1.0 -1.0 0.771
NH2-CH · -CN -22.5 10.3 -0.4 8.8 -2.3 0.908
NH2-CH · -CO-NH2 -24.1 1.2 -1.0 0.0 -2.7 0.776
NH2-CH · -CO-OH -25.4 1.4 -1.0 0.0 -2.8 0.779
·CH2-C≡CH -13.1 10.7 0.9 9.5 0.1 0.960
·C(-CH3)3 -6.4 1.5 0.6 1.3 0.1 0.767
·CH2-C(-CH3)3 -2.3 0.8 0.3 0.8 0.2 0.763
MD 3.8 0.1 3.3 -0.5
MAD 3.8 0.4 3.3 0.8
∆min-max 29.9 2.5 27.2 7.4

a The <S2> values are taken from the unrestricted Hartree-Fock calculation. The mean deviation (MD), the mean absolute deviation
(MAD), and the error range (∆min-max) are listed at the bottom. b CCSD(T)/CBS(DfT). c QZVP basis set on B3LYP/TZVP geometries. d The
theoretical value is always 3/4.
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Methodologically, the OO-MP2 method is closely related
to the CC2 coupled cluster variant. The CC2 doubles
amplitude equations correspond to the conventional MP2
residual, eq 2272 (but with integrals that are ‘dressed’ with
t1 amplitudes). In order to emphasize the similarities between
the OO-MP2 and CC2 methods, one may write the CC2
singles residual and the OO-MP2 orbital gradient in the
following forms:

CC2-singles residual:

OO-MP2 orbital gradient:

Thus, in both approaches, an effective one-particle Fock
matrix enters the quantity to be brought to zero together with
three internal and three external integrals contracted in an

identical way with double excitation amplitudes. The dif-
ference is that in CC2 one uses a fixed set of SCF orbitals
and obtains integrals and amplitudes that are dressed in a
nonlinear way with t1 amplitudes. In the OO-MP2 technique,
one has orbitals that change in each iteration, but one may
well think of the changes as a “dressing” of the SCF orbitals
with orbital rotation parameters. In CC2, one needs to do a
“dressing transformation” in each iteration, while in OO-
MP2 a new integral transformation is required. The dressing
of the integrals and amplitudes in CC2 is, in fact, relaxing
the orbitals. In a Brückner sense, one could even absorb the
t1 amplitudes into the orbitals in each iteration. The similarity
transformed integrals that are usually used in CC2 imple-
mentations expose this feature rather clearly. If the t1

operator, t̂1 ) ∑iata
i aa

+ai, would now be replaced by the full
orbital rotation operator, κ̂ ) ∑aiκai(aa

+ai - ai
+aa), then one

would fully relax to orbital-optimized CC2 that must
resemble OO-MP2. A highly interesting discussion of orbital-
optimized coupled cluster theory has been given by Köhn
and Olsen.119

The effective Fock matrices are given by

Figure 2. Errors of the methods under investigation for the RSE set (RSE(theory) - RSE(reference)). In order to demonstrate
the relation of the error with spin contamination, the <S2> value for each UHF reference is plotted on top.

Figure 3. Polycyclic aromatic hydrocarbons. Methylated
positions, where bond dissociations in the methyl group are
considered, are indicated by numbers.

σa
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Table 6. Bond Dissociation Energies for the C-H bond of
the Methyl Group of Polycyclic Aromatic Hydrocarbons
Based on Single Point Energies with the TZVPP Basis on
B3LYP-D/TZVP Geometriesa

BDE BDE

system SCS-MP2 OO-SCS-MP2 <S2>b B2PLYP-D <S2>b

5-13 183.0 85.4 3.509 90.8 0.896
5-14 180.8 86.4 3.469 91.9 1.361
5-1 189.7 95.7 3.689 103.8 0.757
5-2 187.5 94.1 3.656 102.0 0.850
10-14 187.5 90.4 3.303 94.4 1.112
10-1 115.6 97.3 1.483 99.4 1.046
10-12 194.6 97.2 3.377 98.9 0.757

a The <S2> from the unrestricted Hartree-Fock and DFT
calculation is also given. Energies in kcal mol-1. b The theoretical
value is always 3/4.
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CC2:

OO-MP2:

again, similar terms can be recognized. The computational
effort for both methods must, for optimal implementations,
be rather similar. However, the stationary properties of the
OO-MP2 method make it more efficient for the calculation
of first-order and perhaps also of response properties. This
subject will be investigated elsewhere. From this point of
view, one may regard OO-MP2 as an improved or, at least,
modified second-order coupled-cluster-type theory.

In conclusion, this work evaluates a wave function based
second-order ab initio method that complements existing
approaches such as MP2, SCS-MP2, B2PLYP, or CC2.
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Abstract: The electronic properties of defected TiO2 were investigated using the first-principles
calculations based on density functional theory and generalized gradient approximation. Three
typical defects, oxygen vacancy, titanium interstitial, and titanium vacancy, were considered in
three TiO2 polymorphs, anatase, rutile, and brookite, respectively. Our calculations demonstrated
that the defect band is formed by removing an oxygen atom from or inserting an interstitial Ti
atom into the TiO2 lattice, which is responsible for the improvement of photocatalytic ability due
to the enhanced visible-light absorption. Our calculations further revealed that the defect formation
energy increases as following brookite, anatase, and rutile, indicating that defects are easy to
be created in brookite TiO2. The relatively high defect density and wide defect band contribute
to the better photocatalytic performance of brookite TiO2 in visible light.

Introduction

Titanium dioxide (TiO2) finds wide applications in pigment,
photocatalyst, photovoltaic materials, gas sensor, electrical
circuit varistor, biocompatible material for bone implants,
and spacer material for magnetic spin valve systems.1-4 TiO2,
as a photocatalyst, has attracted substantial interest and been
widely studied since 1972.5 The photocatalytic ability of TiO2

strongly depends on the crystal structure, morphology, and
size. TiO2 has commonly three crystalline polymorphs:
anatase, brookite, and rutile. Generally, the performance of
anatase TiO2 is recognized to be better than the rutile
counterpart.6-8 The photocatalytic performance of anatase
TiO2 was attributed to the shallow electronic levels induced
by oxygen vacancy.8 Recently, it has been illustrated that
brookite TiO2 is more electrochemically active than anatase
TiO2.

9-11 It has been argued that the defects, such as oxygen
vacancy, may make a contribution to the photocatalytic
ability,12-14 because the defect, as a “local factor”, interacts
with the adsorbed molecules and allows effective charge
transfer between the H2O and the TiO2 surface.14,15 More

recently, Wendt et al. reported that the defect state (Ti3d) in
the bandgap of titania was attributed to Ti interstials and
resulted in narrowing the bandgap,16 which played a key role
in providing the electronic charge required for O2 adsorption
and dissociation. To date, the mechanism for the phase-
dependent photocatalytic ability has not been clarified. The
understanding of the origin should help the searching of
photocatalyst with high efficiency. In this work, we system-
atically studied the effects of the defects on the electronic
properties of TiO2 by first-principles calculations. The first-
principles calculations confirmed that the defects whose states
were located within the bandgap can result in the improve-
ment of visible-light absorption and revealed the origin of
the phase-dependent photocatalytic ability of TiO2.

Methods

The first-principles calculation based on the density func-
tional theory17 and the Perdew-Burke-Eznerhof generalized
gradient approximation (PBE-GGA)18 was carried out to find
the mechanism of the phase-dependent photocatalytic per-
formance of TiO2. The projector augmented wave (PAW)
scheme19,20 as incorporated in the Vienna ab initio simulation
package (VASP)21 was used in the study. The Monkhorst
and Pack scheme of k point sampling was used for integration
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over the first Brillouin zone.22 The GGA+U method was
used to treat 3d electrons of Ti with the Hubbard on-site
Coulomb interaction parameter (U-J) of 6 eV.23 A 3 × 3 ×
3 grid for k-point sampling and an energy cutoff of 380 eV
were consistently used in our calculations. Good convergence
was obtained with these parameters, and the total energy was
converged to 2.0 × 10-5 eV/atom. The bulk anatase,
brookite, and rutile TiO2 structures are modeled with a 3 ×
3 × 1, 1 × 2 × 2, 2 × 2 × 3 supercell containing 36 Ti
atoms and 72 O atoms, 32 Ti atoms and 64 O atoms, 24 Ti
atoms and 48 O atoms, respectively. The oxygen or titanium
vacancy is modeled by removing oxygen or titanium atom
from the supercell. The titanium interstitial is created by
adding interstitial Ti atom into the supercell.

Results and Discussion

The local structure around the defect is distorted, such as
bond extension, after geometry optimization. For anatase
TiO2 (a-TiO2), the atoms surrounding the Ti interstitial (Tii)
are pushed away with the change of the Ti-O bond length
within 1.5% (Figure 1a,b). The effect of oxygen vacancy
(VO) on the local structure is different from that of Ti
interstitial. VO attracts the nearest Ti atoms and the oxygen
atoms bonded with the Ti atoms in the x direction, while it
pushes the oxygen atoms out in the y direction (Figure 1c,d).
The change of the bond length in the local structure induced
by VO is within 1%. The Ti vacancy (VTi) slightly stretches
the nearest oxygen atoms and Ti atoms (bonded with the
nearest oxygen atoms) in all directions (Figures 1e,f) with a
change of bond length within 0.5%. For brookite TiO2 (b-
TiO2), the defect-induced distortion on the local structure is
much less than that in a-TiO2. The bond length around Tii is
slightly extended within 0.5%, and the distortion induced

by VTi or VO is within 0.6%. The changes of bond length in
the local structures of rutile TiO2 (r-TiO2) around Tii and
VO are within 1% and 0.5%, respectively. The Ti-O bond
length in the local structure is reduced by 4% after removing
one Ti atom from rutile TiO2. The effect of Tii on the local
structure decreases following a-TiO2, r-TiO2, and b-TiO2.

The defects affect not only the local structure but also the
electronic properties of TiO2. Figure 2 shows the total and
partial density of states (DOS and PDOS) of a-TiO2 with
and without defects. The calculated bandgap of perfect
a-TiO2 is about 2.72 eV (Figure 2a). The analysis of PDOS
indicates that the valence top states and conduction bottom
states of the perfect a-TiO2 are mainly attributed to the
oxygen 2p states and Ti 3d electrons, respectively (Figure
2b). For a-TiO2 with a Ti interstitial, an intermediate band
within the bandgap, defect states, can be observed in DOS
of a-TiO2 with Tii, which is close to the conduction band
bottom (Figure 2c) and attributed to the interstitial Ti 3d
and oxygen (near the Tii) 2p electrons (Figure 2d). The
oxygen vacancy can also introduce an additional band into
the bandgap, located almost at the middle of the bandgap
(Figure 2e). The defect states induced by the oxygen vacancy
are mainly attributed to the Ti 3d electrons due to the
unsaturated bonds after removing the oxygen atom (Figure
2f). The bandgap of a-TiO2 is slightly reduced to 2.64 eV
by removing the Ti atom from the lattice (Figure 2g). The
Fermi level is within the valence band (Figure 2g), indicating
that a-TiO2 with VTi is a p-type semiconductor, consistent
with the experimental reports.14 The PDOS analysis indicated
that the valence band top and conduction band bottom states
of a-TiO2 with VTi are mainly attributed to oxygen 2p orbitals
and Ti 3d electrons, respectively (Figure 2h), similar to those
of perfect a-TiO2 (Figure 2b). For perfect r-TiO2, the

Figure 1. The local structures: (a) and (b) around Ti interstitial, (c) and (d) around oxygen vacancy, and (e) and (f) around Ti
vacancy after geometry optimization.
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calculated bandgap is 2.36 eV, as indicated in the DOS of
r-TiO2 (Figure 3a). The PDOS of perfect r-TiO2 shows that
the oxygen 2p and Ti 3d electrons are contributed to the
valence top and conduction bottom states, respectively
(Figure 3b). It was found that an intermediate band within
the bandgap is formed by introducing Tii or VO into the
r-TiO2 (Figure 3c,e) lattice, which is mainly attributed to Ti
3d electrons (Figures 3d,f). The r-TiO2 can also be a p-type
semiconductor if removing a Ti atom from its supercell
(Figure 3g). For perfect b-TiO2, the calculated bandgap is
2.64 eV (Figure 4a), with its valence top and conduction
bottom stated originating from the oxygen 2p states and Ti
3d electrons, respectively (Figure 4b). For defected b-TiO2,
similar results can be obtained. The Tii or VO states form
the intermediate band within the bandgap of b-TiO2 (Figure
4c,e), mainly attributing to the Ti 3d electrons (Figure 4d,f),
and the VTi shifts the Fermi level down into the valence band
(Figure 4g). Our calculations demonstrated that the inter-
mediate band within the bandgap can be formed by creating
VO or Tii in the TiO2 lattice, and the Fermi level is shifted
into the valence band due to the formation of VTi, regardless

of the crystal structure. However, it was found that the gap
between the Tii defect band top and the conduction band
bottom of b-TiO2 (∼0.12 eV, Figure 4c) (the PDOS shows
that there is almost gapless between the defect and the
conduction bands (Figure 4d)) is much less than those of
a-TiO2 (∼0.57 eV, Figure 2c) and r-TiO2 (1.0 eV, Figure
3c), and the Tii defect states occupy a width of ∼0.61 eV in
the bandgap of b-TiO2, which may contribute to the better
photocatalytic performance of b-TiO2 due to the maximum
absorption of sunlight induced by bandgap narrowing.

Figure 5 shows the formation energies of three-type defects
in the three TiO2 structures, which is estimated from

where Etot(TiO2+defect) and Etot(TiO2) are total energies of
the TiO2 with and without defect, respectively. µO and µTi

are the chemical potentials of O and Ti, respectively. µO )
1/2µ(O2) and µTi ) µ(TiBulk). The detailed numbers were
provided in Table 1. We can see that the formation VTi

requires higher energy than that of VO or Tii, indicating VTi

Figure 2. The calculated density of states (DOS) of a-TiO2: (a) perfect, and with (b) Ti interstitial, (c) oxygen vacancy, and (d)
Ti vacancy, and the calculated partial density of states (PDOS) of a-TiO2 without defect (e) and with defect: (f) Ti interstitial, (g)
oxygen vacancy, and (h) Ti vacancy.

Figure 3. The DOS of r-TiO2: (a) perfect, and with (b) Ti interstitial, (c) oxygen vacancy, and (d) Ti vacancy, and the PDOS of
r-TiO2 without defect (e) and with defect: (f) Ti interstitial, (g) oxygen vacancy, and (h) Ti vacancy.

Ef ) Etot(TiO2 + defect) - Etot(TiO2) + µO(or ( µTi)
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is difficult to be created under moderate conditions. Experi-
mentally, VTi can only be formed at elevated heating
temperature and in oxygen ambiance,14 consistent with our
calculation results. The relatively low formation energies of
VO and Tii demonstrate the fact that TiO2 is a nonstoichio-
metric compound with oxygen deficiency. Generally, the
defect formation energy decreases with the trend of VTi, VO,
and Tii for the same TiO2. The formation energies of VTi

and VO increase with the TiO2 structures changing from
brookite to anatase, further to rutile. The relatively low
formation energy of Tii in b-TiO2 indicates that its formation
in b-TiO2 is easier than that in a-TiO2 and r-TiO2, and b-TiO2

may be produced under Ti-rich condition. In Ti-rich condi-
tion, the Ti interstitial is the dominant defect, which may
trigger the formation of brookite structure due to its lower
formation energy in b-TiO2 (Figure 5).

From the calculated electronic properties of the defected
TiO2 and the defect formation energy, we may reveal the
origin of the phase-dependent photocatalytic ability of TiO2.
The Tii and VO are the most common defects in a-TiO2 and

r-TiO2 due to their relatively low formation energies (Figure
5). However, the formation of Tii and VO in a-TiO2 is easier
than those in r-TiO2 because their formation energies in
a-TiO2 are less than those in r-TiO2 (Figure 5). The relatively
low formation energies of titanium interstitial and oxygen
vacancy (Ef) in a-TiO2 indicate that the defect density (exp(-
Ef/kBT)) is high, and the intermediate defect band within the
bandgap induced by Tii or VO in a-TiO2 results in the
maximally utilization of the sunlight (Figure 2), which should
attribute to the improved photocatalytic performance of
a-TiO2. The observation of further improvement of photo-
catalytic ability in b-TiO2 is also contributed to the easy
formation of defects, increased defect density and enhanced
light absorption. The relatively low formation energies of
Tii and VO in b-TiO2 indicate that their densities are higher
than those in a- and r-TiO2. The defect states induced by
the two-type defects may result in a broad defect band, even
crossing the small gap and overlapping with the conduction
band bottom (Figure 4c), i.e. the bandgap narrowing, similar
to the doping effect. The defect-induced bandgap narrowing
and the relatively high defect density due to lower defect
formation energy in b-TiO2 greatly enhance the photocata-
lytic performance of b-TiO2 in visible light.

Conclusions

In summary, a systematic study of the defect effect on the
photocatalytic ability of TiO2 was carried out based on first-
principles calculations. We found that the intermediate band
induced by defect, Ti interstitial, or oxygen vacancy is
located within the bandgap, responsible for the enhancement
of visible-light absorption. The calculation on the defect
formation energy indicated that titanium interstitial and
oxygen vacancy are easy to be formed due to their lower
formation energies. The formation energies of oxygen
vacancy and Ti interstitial decrease as rutile, anatase, and
brookite, revealing the mechanism of phase-dependent pho-
tocatalytic ability of TiO2. The low formation energy of Ti
interstitial in b-TiO2 indicated that b-TiO2 may be easily
produced in Ti-rich condition. The better photocatalytic
performance in b-TiO2 in visible light is attributed to the

Figure 4. The DOS of b-TiO2: (a) perfect, and with (b) Ti interstitial, (c) oxygen vacancy, and (d) Ti vacancy, and the PDOS of
b-TiO2 without defect (e) and with defect: (f) Ti interstitial, (g) oxygen vacancy, and (h) Ti vacancy.

Figure 5. The formation energy of defect in the three TiO2

structures.

Table 1. Calculated Formation Energies of Defects

Tii (eV) VO (eV) VTi (eV)

a-TiO2 5.07 5.58 11.76
b-TiO2 4.87 5.52 11.19
r-TiO2 5.70 5.82 10.86
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relatively high defect density, broad defect states in the
bandgap, and bandgap narrowing.

Acknowledgment. This work was sponsored by the
Office of Basic Energy Sciences, Division of Materials
Sciences and Engineering and Laboratory Directed Research
and Development (LDRD) Program of Oak Ridge National
Laboratory (ORNL), which is managed by UT-Battelle LLC
for the U.S. Department of Energy under contract No. DE-
AC05-00OR22725. The DFT calculations were performed
at the Computational Center of Science (CCS) of ORNL.

References

(1) Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photoca-
talysis. Fundamentals and applications; BKC, Inc.: Tokyo,
1999; pp 14-176.

(2) Chen, X.; Mao, S. S. Chem. ReV. 2007, 107, 2891.

(3) Pfaff, G.; Reynders, P. Chem. ReV. 1999, 99, 1963.

(4) Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. ReV. 1995, 95,
735.

(5) Fujishima, A.; Honda, K. Nature 1972, 238, 37.

(6) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.
Chem. ReV. 1995, 95, 69.

(7) Hagfeldt, A.; Gratzel, M. Chem. ReV. 1995, 95, 49.

(8) Mattioli, G.; Filippone, F.; Alippi, P.; Bonapasta, A. A. Phys.
ReV. B 2008, 78, 241201.

(9) Koelsch, M.; Cassaignon, S.; Guillemoles, J. F.; Jolivet, J. R.
Thin Solid Films 2002, 403, 312.

(10) Shibata, T.; Irie, H.; Ohmori, M.; Nakajima, A.; Watanabe,
T.; Hashimoto, K. Phys. Chem. Chem. Phys. 2004, 6, 1359.

(11) Iskandar, F.; Nandiyanto, A. B. D.; Yun, K. M.; Hogan, C. J.,
Jr.; Okuyama, K.; Biswas, P. AdV. Mater. 2007, 19, 1408.

(12) Lin, Z.; Orlov, A.; Lambert, R. M.; Payne, M. C. J. Phys.
Chem. B 2005, 109, 20948.

(13) Serpone, N. J. Phys. Chem. B 2006, 110, 24287.

(14) Nowontny, M. K.; Sheppard, L. R.; Bak, T.; Nowontny, J. J.
Phys. Chem. C 2008, 112, 5275.

(15) Nowontny, J.; Bak, T.; Nowontny, M. K. J. Phys. Chem. B
2006, 110, 21560.

(16) Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li,
Z.; Hansen, J. Ø.; Matthiesen, J.; Blekinge-Rasmussen, A.;
Lægsgaars, E.; Hammer, B.; Besenbacger, F. Science 2008,
320, 1755.

(17) Hohenberg, P.; Kohn, W. Phys. ReV. 1964, 136, B864.

(18) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77, 3865.
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Abstract: Density functional theory studies have been carried out to investigate the energetics
and structures of Ti-doped LiBH4 (001), (100), and (010) surfaces. The possibilities of Ti
occupying various positions at these surfaces leading to substitution, surface adsorption, and
interstitial insertion are examined. Among all possible structures, a Ti atom energetically prefers
to occupy interstitial positions involving three or four BH4

- hydrides and to stay above the top
layer of B atoms. The most stable species on the three surfaces have a similar local structure,
described as TiB2H8-nBH4 (n ) 1, 2), with varying spin states. Molecular orbital analysis for
the local structures showed that the structural stability could be attributed to the symmetry-
adapted orbital overlap between Ti and “inside” B-H bonds. Furthermore, the hydrogen
desorption energies from many positions in these local complex structures were reduced
significantly with respect to that from the clean surface. The most favorable hydrogen desorption
pathways are found to lead to triplet dehydrogenation products. Therefore, the triplet TiB2H8-BH4

in (001) and TiB2H8-2BH4 in (010) can desorb hydrogen in molecular form, while the quintet
TiB2H8-BH4 in (100) must first desorb hydrogen atoms, followed by the formation of a hydrogen
molecule in the gas phase. The catalytic effect of Ti doped in LiBH4 has been compared with
that in NaAlH4.

1. Introduction

Many attempts have been made to develop new materials
with high hydrogen storage capacities in order to meet the
demand of commercial vehicles powered by H2/O2 proton
exchange membrane fuel cells.1-3 Lithium borohydride
(LiBH4) has been an attractive candidate due to its intrinsi-
cally high gravimetric and volumetric hydrogen capacities
(18.2 wt %, 121 kg/m3).2 Unfortunately, pure LiBH4 material
is too stable and only liberates 2% of the hydrogen even at
the melting point (541-559 K).4 For LiBH4, the partial
decomposition to LiH(s) + B(s) + 3/2H2(g) has a standard
enthalpy of 100.3 kJ/mol.5 The highly endothermic reaction
indicates that dehydrogenation of LiBH4 must be performed
at elevated temperatures. The experimental results of Züttel
et. al showed that a significant hydrogen desorption peak
started at 673 K and reached its maximum value around 773
K.6 In order to use LiBH4 as a practical hydrogen storage

material, the enthalpy of the dehydrogenation reaction has
to be reduced, by either stabilizing the dehydrogenated state
or destabilizing the hydrogenated state.

Many compounds which bind strongly to borohydrides or
provide a source to allow partial substitution of Li cations
have been mixed with LiBH4. Züttel et al. found that 75%
LiBH4 mixed with 25% SiO2 can reduce the initial hydrogen
release temperature from 673 to 523 K.6 On the other hand,
the rehydrogenation reaction will not occur under mild
conditions. The same authors reported that synthesizing
LiBH4 from its elements under conditions up to 923 K and
150 bar of H2 pressure was unsuccessful.6 Mixing com-
pounds with cations of similar size to Li but having a higher
valence, such as Mg2+, was also attempted.7 The temperature
of the dehydrogenation reaction was lowered by approxi-
mately 30 K when Li in LiBH4 was partially substituted by
Mg2+. Vajo et al. reported a more complicated mixture of
LiBH4 and LiH + 0.5MgB2, doped with 2-3 mol % TiCl3.
They showed that 9 wt % hydrogen was adsorbed at 627 K* Corresponding author e-mail: qge@chem.siu.edu.
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and 100 bar, neglecting the weight of TiCl3.
8 Their P-C-T

isotherms demonstrated that the addition of MgH2 reduced
the rehydrogenation/dehydrogenation enthalpy by ∼25 kJ/
(mol H2) compared with the pure LiBH4 material. A finding
relevant to the present study is that their initial experiments
without TiCl3 displayed poor kinetic performance. Recently,
Au et al. showed that LiBH4 modified by metal oxides or
metal chlorides, such as TiO2 and TiCl3, could reduce the
dehydrogenation temperature and achieve rehydrogenation
under moderate conditions.9,10 Modified LiBH4 releases 9
wt % H2, starting as low as 473 K, which is significantly
lower than the hydrogen-releasing temperature of 673 K for
pure LiBH4. After being dehydrogenated, the modified LiBH4

can absorb 7-9 wt % H2 at 873 K and 70 bar, a significant
improvement from 923 K and 150 bar for pure LiBH4. Very
recently, Fang et al. reported that a mechanically milled
3LiBH4/TiF3 mixture released 5-6 wt % hydrogen at
temperatures of 343-363 K.11 Similarly, the use of other
dopants has been attempted to reduce the hydrogen desorp-
tion temperature of MgH2.

12,13 Clearly, the addition of Ti
compounds (TiO2, TiCl3, and TiF3) results in a strong
improvement for hydrogen desorption and, to a lesser extent,
for rehydrogenation. On the other hand, the improvement
brought by these additives to LiBH4 is not sufficient to make
LiBH4 viable as a practical hydrogen storage medium in spite
of its structural similarity to NaAlH4. Chemically, boron
holds onto its hydrogen atoms tighter in LiBH4 than
aluminum does in NaAlH4. A comparative study of Ti-doped
LiBH4 and NaAlH4 would provide some insights into the
effect of doped Ti on hydrogen interactions in these materials.
Previously, we identified an interstitial TiAl3H12 complex
structure to be the most stable species in both Ti-doped
NaAlH4(001) and (100) surfaces.14,15 Hydrogen desorption
energies from many positions of the TiAl3H12 complex
structure were reduced considerably as compared with that
from an undoped surface. Our prediction of the complex
structure was confirmed subsequently by an experimental
study: the interstitial structure was shown to account for 75%
of all Ti doped in NaAlH4.

16 Furthermore, we studied 3d-
transition-metal (TM)-doped NaAlH4(001) and found that
the stability of TMAl3H12 and its desorption energies
correlate with the 18-electron rule.17 The coordination
chemistry of a transition metal with tetrahydroborate ligands
has been extensively discussed in the literature.18-23 The
electron-counting rule and electronic structure analysis were
used to explain the stability of molecular complexes such
as Ti(BH4)3.

18,20,23,24 Considering that Ti(BH4)n may be
formed in Ti-doped LiBH4, it is expected that the explanation
and analysis applied in Ti(BH4)3 can be helpful in under-
standing the stability of local structures in Ti-doped LiBH4.
On the other hand, we expect some discrepancies between
Ti(BH4)n in Ti-doped LiBH4 and the complex Ti(BH4)3

because of the different ligand charge. Furthermore, electron
redistribution in a saltlike solid-state complex may cause the
electron-counting rule to be different from that of the isolated
clusters. The creation of the surface will further change the
local environment of the ions, especially in regions close to
the surface.

Herein, we explored the effect of added Ti to the B-H
interaction in LiBH4 on the basis of various surface models.
We examined the structures and the stabilities of LiBH4

(001), (100), and (010) surfaces doped with a Ti atom. On
the basis of the most stable structures, we computed the
hydrogen desorption energies and compared them with those
of undoped LiBH4 surfaces. We also compared the effect of
doped Ti in LiBH4 surfaces with that in NaAlH4 surfaces
and identified key differences between the two systems.

2. Computational Details

Periodic density functional theory (DFT) calculations with
spin-polarization were carried out using the VASP code.25,26

The electron-ion interactions were described by the projector
augmented wave (PAW).27 The valence electrons of Li
2s12p0, B 2s22p1, H 1s1, and Ti 3d34s1 were treated explicitly
with a plane-wave basis set at a cutoff energy of 400 eV.
The exchange-correlation energy was calculated with the
PBE form of the generalized gradient-corrected functional.28,29

The surface Brillouin zone was sampled with the K points
generated by the Monkhorst-Pack scheme and with a space
less than 0.05 Å-1.30 Similar parameters have been used in
our previous calculations, in which test results were consis-
tent with experimental observation.14,15,17,31,32

The supercell structures of clean LiBH4 surfaces were built
from the optimized bulk structure.32 The vacuum spaces in
all surface calculations are larger than 15 Å along the z
direction. The geometries of slabs were optimized by the
quasi-Newton or conjugate-gradient method as implemented
in VASP. A Gaussian electronic smearing of 0.1 eV was
employed to improve the convergence of electronic self-
consistent cycles. The convergence criteria for energy and
force are 1.0 × 10-6 eV and 0.05 eV/Å, respectively. Six
layers of B atoms were included in the slabs, simulating the
surfaces. The Li and B atoms in the bottom two layers of
the slab were fixed at their corresponding bulk positions,
while the Li and B atoms in the top four layers as well as
all of the hydrogen atoms were allowed to relax according
to the Hellman-Feynman forces. The total energies of the
relaxed slabs were used as references to calculate the binding
energy for Ti doped in different positions. The reference
energy of the Ti atom was calculated by placing a Ti atom
in a large box with spin-polarization. The converged self-
consistent field cycles resulted in a Ti atom with a quintet
multiplicity, consistent with the electronic ground state of
the Ti atom.33 The electronic structures of local structures
were calculated using Gaussian03 without further optimiza-
tion and analyzed with GaussView 3.0.34 The atomic
electronic charges were determined according to the Bader’s
scheme implemented by Henkelman and Jonsson.35

3. Results and Discussion

3.1. Energetics and Structures of Ti-Doped LiBH4. A
number of experimental studies of TiCl3-doped sodium
alanates indicated that Ti was reduced to zero valence and
dispersed into the host materials.36-42 We therefore chose
to study the Ti atom interaction with the LiBH4 surfaces.
The slabs of three clean surfaces, that is, (001), (100), and
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(010), were optimized first. The unit cells of these surfaces
have lateral dimensions of 7.1065 × 8.6532, 8.6532 ×
6.6140, and 6.6140 × 7.1065 Å2, respectively.32 The clean
(100) and (010) surfaces have a surface energy of ∼0.12
J/m2 and are significantly more stable than the (001)
surface.32 On the basis of the relaxed clean surfaces, several
possible positions for adding Ti in the LiBH4 surfaces were
considered. The relaxed structures are shown in Figure 1a,
the (001) surface, 1b, the (100) surface, and 1c, the (010)
surface. The binding energy and Bader charge of Ti are also
given in each structure. In all of the structures, Ti loses
electrons and becomes positively charged. Furthermore, the
Bader charge on Ti depends on its depth/position and
coordination with the BH4

- units. According to the final
position of the Ti atom, the relaxed structures were classified
as interstitial insertion, surface adsorption, and substitution
of Li, which were prefixed with Inter, Surf, and Sub,
respectively. We note that Surf corresponds to the structures
in which Ti interacts with BH4

- through H only. In order to
account for the local geometric structures, we categorized
the arrangements of the BH4

- ligands around the Ti atom
into T-shape, linear, triangle, and square. The binding
energies, the depth of the Ti atom with respect to the surface
layer B atoms, as well as the local geometric shape are all
summarized in Table 1.

For Ti-doped LiBH4 (001) surface, Inter_1, with a binding
energy of -2.598 eV, is energetically the most stable among
all relaxed structures of the Ti-doped LiBH4 (001) surface.
In Inter_1, Ti connects with two BH4

- units in the first layer
via Ti-B and Ti-H bonds and interacts with a third BH4

-

unit in the second layer through a Ti-H bond, as shown in
Figure 1a. The local structure of Inter_1 is referred to as
TiB2H8-BH4, distinguishing the BH4

- unit in the second
layer from those in the top layer. The Ti atom and three
BH4

- ligands form a T-shape geometric arrangement. In-
ter_5, which has a similar local structure to Inter_1, is 1.374
eV less stable. The obvious difference between Inter_5 and
Inter_1 is the location of the Ti in the former with respect
to the surface: Ti is situated 4.387 Å below the first layer B
atoms in Inter_5, whereas the Ti depth is only 0.343 Å in
Inter_1. In fact, there is a correlation between the depth of
Ti in the slab and the stability of the structure for the same
type of doping mode (interstitial insertion, surface absorption,
and substitution) in the same surface.

The slab representing the LiBH4 (100) surface has a
double-layered arrangement, that is, the layer spacing
alternates between large and small. This resulted in two
possible slab models for the surface: one with an arrangement
of a small interlayer spacing between the top and second
layers and a large one between the second and the third layers
and another with the reversed arrangement. Our results show
that the first one is 0.121 eV more stable than the second.
Therefore, we chose the first arrangement as our model for
the (100) surface.

Doped Ti interacts primarily with the BH4
- units in the

first two layers. Again, Inter_1 is the most stable structure
among all of the relaxed structures of the Ti-doped LiBH4

(100) surface and has a binding energy of -1.608 eV. Three
surrounding BH4

- units and the Ti atom form a T-shape local

arrangement. We note that the local structure of Inter_1 in
the (100) surface is very similar to that of Inter_1 in the
(001) surface and can also be denoted as TiB2H8-BH4. As
shown in Figure 1b, the substitutional doping (Sub_1 and
Sub_2) seems to result in local structures similar to those in
interstitial insertion. However, these structures are much less
stable. The reduced stabilities of these structures are related
to the displacement of Li cations, which costs a significant
amount of energy. The weaker electron-donating ability of
Ti relative to that of Li causes fewer electrons to be donated
from Ti to the sp3 orbitals of BH4

-, leading to an incomplete
occupancy of the bonding orbitals.

The results of doping Ti in the LiBH4 (010) surface are
similar; that is, the interstitial insertion is energetically the
most favorable doping mode. In Inter_1 formed on the (010)
surface, two BH4

- units in the second layer share their
interactions with the two BH4

- units in the top layer, forming
a TiB2H8-2BH4 local complex. The binding energy of this
structure is -1.709 eV. Geometrically, TiB2H8-2BH4 forms
a square arrangement.

In summary, doped Ti prefers the interstitial position
formed by three or four BH4

- units, forming a TiB2H8-BH4

complex in the (001) and (100) surfaces and a TiB2H8-2BH4

complex in (010). In the most stable structures, Ti sits in
the first layer of the LiBH4 surface. The detailed local
structures are replotted in Figure 2 by removing other Li
atoms and other BH4

- units that are not directly connected
to the Ti atom. The atoms in those structures are numbered
in Figure 2 and will be referred to as such in the following
sections. Although TiB2H8-BH4 (T-shape) and TiB2H8-
2BH4 (square) have different geometric arrangements, the
main part of the structures, TiB2H8, is very similar in the
three structures. In fact, the linear TiB2H8 is the main
constituent of the structure and determines the stability of
the structures. This analysis is supported by the fact that the
binding energies of Inter_1 and Inter_2 in the Ti-doped
LiBH4 (001) surface only differ by 0.189 eV. However, these
binding energies are much smaller than that of Ti in the
TiAl3H12 structure formed upon doping Ti in NaAlH4

(-4.182 eV).14 We showed that doping Ti in NaAlH4 would
become thermodynamically unfavorable if bulk Ti was used
as a reference state.17 Doping Ti in LiBH4 will be more
endothermic than in NaAlH4.

3.2. Hydrogen Desorption from TiB2H8-BH4 and
TiB2H8-2BH4. Many experiments showed that the Ti-
containing compounds in alanate-based materials enhanced
the dehydrogenation kinetics and improved the rehydroge-
nation conditions.16,37,40,43-46 We attributed the reduction
in dehydrogenation temperatures to the formation of the
TiAl3H12 complex. We showed that hydrogen desorption
energies from many positions of the complex were reduced
compared to the undoped surfaces. Furthermore, our analyses
indicated that the effect was not localized to the complex
structure. Herein, we examined the effect of doped Ti in
LiBH4 on dehydrogenation on the basis of the most stable
structures: TiB2H8-BH4 on (001) and (100) and TiB2H8-
2BH4 on (010).

We note that the most stable structures carry net magnetic
moments. Our further analyses of local spin-density showed
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that the magnetic moments were largely localized to Ti, with
some residual spins (1 to 2 orders of magnitude lower than
on Ti) on the neighboring BH4

- units but limited to the
TiB2H8-nBH4 (n ) 1, 2) local structures. The resulting

magnetic moments are integers in most cases. Even in the
few cases of noninteger values, they are within 0.01 from
the closest integer. Therefore, we borrowed the terms that
have been used to describe isolated molecules and considered

Figure 1. The DFT-GGA relaxed structures of Ti doped in the (a) (001), (b) (100), and (c) (010) surface of LiBH4. The binding
energy and net Bader charge of Ti are given in the top-left and bottom-left corners of each structure, respectively. The white,
peach, purple, and gray balls represent H, B, Li, and Ti atoms, respectively. The yellow ball in the substitution structures represents
the Li atom substituted by the Ti atom.
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the unit cell in a singlet (zero unpaired electron), triplet (two
unpaired electrons), or quintet (four unpaired electrons) state.

We expected that the spin states would play some roles
in hydrogen desorption. We calculated the hydrogen desorp-
tion energies from various positions of the TiB2H8-nBH4

complex structures. We considered the products in different
spin states and listed the desorption energies accordingly in
Table 2. The numbering of hydrogen atoms in Table 2 was
labeled in the local structures shown in Figure 2. For clarity,
the lower-energy and, therefore, favorable product states are
given in bold. We stress that all of our calculations have
been done with the periodic boundary condition using the
VASP program. The cluster structures were used for clarity
in the presentations. Following the convention that we
developed in treating the TiAl3H12 complex, the hydrogen
atoms were classified into outside hydrogen atoms (H5∼H8),
inside hydrogen atoms (H9∼H12), and mixed hydrogen atoms
(H1∼H4), according to their relative positions to Ti. As a
reference, the hydrogen desorption energies from the un-
doped (001), (100), and (010) surfaces were calculated as
3.676, 3.856, and 3.768 eV, respectively, and all led to a
singlet product state.32 In general, all hydrogen desorption
energies listed in Table 2 are significantly lower than those
of the corresponding clean surfaces. The lower desorption
energies may favor a quick release of hydrogen from the
system, which is consistent with the experimental observa-
tion.11 We believe that the doped Ti in LiBH4 can improve
the thermodynamics by reducing dehydrogenation energies
and may enhance the dehydriding and rehydriding kinetics
through the complex active centers. Although the activation
barrier of the elementary step provides some kinetics
information about the process, an overall kinetic description
needs all of the steps involved in the complicated network
of reactions. These steps include hydrogen recombination

and desorption as well as hydrogen migration and phase
transition. This is beyond the scope of the present paper.

We used S, T, and Q to denote the singlet, triplet, and
quintet states, respectively, and summarized possible reac-
tions involved in dehydrogenation into the following reactions:

Reactions R1, R3, and R5 represent one-step pathways
for forming a hydrogen molecule, while eqs R2, R4, and
R6 are two-step pathways which involve desorbing atomic
hydrogen first and recombining the desorbed hydrogen atoms
in the gas phase. Along the two-step pathways, the spin state
may change as the reaction progresses. For example, triplet
TiB2H8-BH4 on the (001) surface and TiB2H8-2BH4 on the
(010) surface can form a singlet product following the H
atom desorption, R4, whereas the quintet TiB2H8-BH4 on
the (100) surface can lead to a triplet product, R6. The
desorption energies listed in Table 2 are the overall reaction
energies of R3-R6. A triplet product state is energetically
more favorable than the singlet product state in the Ti-doped
LiBH4 (001) surface. Therefore, we expect that the dehy-
drogenation of triplet TiB2H8-BH4 on the (001) surface will
follow the one-step mechanism described in reaction R3 and
desorb a hydrogen molecule from the Ti catalytic center.
As shown in Table 2, the inside hydrogen atoms (H9-H12)
have a much higher desorption energy than those from other
positions but are still lower than that of the undoped clean
surface. As discussed later, the structural stability really
depends on the orbital overlap between inside B-H bonds
and Ti. Desorption of inside hydrogen atoms results in a
relatively higher desorption energy due to the reduced orbital
overlap between Ti and inside B-H bonds.

In contrast, from the quintet TiB2H8-BH4 of the Ti-doped
LiBH4 (100) surface, the triplet product state upon desorbing
hydrogen is favored. Therefore, the quintet TiB2H8-BH4 on
surface (100) may have a two-step dehydrogenation mech-
anism, described in reaction R6. Hydrogen atoms are first
released from the TiB2H8-BH4 cluster and then combine to
form a hydrogen molecule in the gas phase. An exception is
that some inside hydrogen pairs such as H10-H11 and
H10-H12 show much lower desorption energies than the
corresponding pairs in the Ti-doped LiBH4 (001) surface. A
careful examination revealed that hydrogen desorption from
these positions of TiB2H8-BH4 in the (100) surface led to
outside hydrogen atoms being transferred to inside positions.
In contrast, a similar hydrogen transfer was not found in the
triplet TiB2H8-BH4 in the (001) surface.

For the triplet TiB2H8-2BH4 of the Ti-doped LiBH4 (010)
surface, the majority of hydrogen desorption pathways still
led to triplet states. Desorption of H1-H2, H3-H4, and

Table 1. Binding Energies, Depth of Ti with Respect to the
First Layer of B, and Shape of Local Structures in the
Ti-Doped LiBH4 (001), (100), and (010) Surfaces

binding energy (eV)

species depth ligand singlet triplet quintet

Ti-Doped LiBH4 (001)
Inter_1 -0.343 T-shaped -2.256 -2.598 -2.580
Inter_2 +0.233 linear -2.181 -2.409 -2.205
Inter_3 -0.743 square -1.475 -1.660 -1.716
Inter_4 -2.048 linear -1.261 -1.442 -1.581
Inter_5 -4.387 T-shaped -1.154 -1.224 -1.205
Sub_1 -2.053 triangle -1.432 -1.422
Sub_2 -0.445 linear -1.048 -1.315 -1.322
Surf_1 -0.547 square -2.132 -2.233

Ti-Doped LiBH4 (100)
Inter_1 -0.059 T-shaped -1.010 -1.392 -1.608
Inter_2 -0.937 T-shaped -0.598 -0.870 -1.101
Sub_1 -0.095 T-shaped -0.987 -1.187 -0.834
Sub_2 -1.233 triangle -0.873 -1.005 -0.881
Surf_1 +1.148 linear -0.213 -0.922 -0.790
Surf_2 +1.233 triangle -0.242 -0.481 -0.904

Ti-Doped LiBH4 (010)
Inter_1 -0.907 square -1.594 -1.709 -1.444
Inter_2 -2.399 T-shape -1.093 -1.330 -1.270
Inter_3 -0.699 triangle -0.670 -0.924 -1.081
Inter_4 -4.431 T-shape -0.779 -0.999 -0.408
Sub_1 -1.920 triangle -1.106 -1.276 -1.060
Surf_1 +0.226 linear -0.655 -0.872 -1.046

S f S + H2 (R1)

S f S + H + H f S + H2 (R2)

T f T + H2 (R3)

T f S + H + H f S + H2 (R4)

Q f Q + H2 (R5)

Q f T + H + H f T + H2 (R6)
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H6-H8 resulted in singlet states. We consider the singlet
and triplet states as the competitive hydrogen desorption
pathways due to the very similar desorption energies. We
would point out that the triplet TiB2H8-2BH4 in the (010)
surface has lower desorption energies than the triplet and
quintet TiB2H8-BH4 in the (001) and (100) surfaces,
respectively.

3.3. Comparison of Ti-Doped LiBH4 with Ti-Doped
NaAlH4. As we stated in the Introduction, the improvement
by adding Ti compounds in LiBH4 is not as efficient as
doping Ti compounds in NaAlH4.

9,10 A comparison of Ti-
doped LiBH4 and Ti-doped NaAlH4 will help to understand
the changes that Ti induces in B-H interactions and how
these changes affect subsequent dehydriding/rehydriding
reactions. Our previous studies of Ti-doped NaAlH4 showed
that doped Ti prefers to occupy the interstitial site and
interacts with surrounding AlH4

-, forming a TiAl3H12

species.14,15 We further suggested the role of the TiAl3H12

complex in dehydriding and hydriding sodium alanate-based
hydrogen storage materials.17

First of all, our results indicate that Ti energetically prefers
to occupy the interstitial positions in both NaAlH4 and LiBH4

surfaces, although the detailed structures of the local
complexes in LiBH4 are different from that of Ti-doped
NaAlH4. We used TiB2H8-nBH4 to represent the complex
structures formed from doping Ti in LiBH4. The stability of
these species may play an important role in their reactivity
for the dehydriding/hydriding reactions. On the other hand,
hydrogen desorption energies in both Ti-doped LiBH4 and
NaAlH4 were also reduced significantly with respect to that
from their corresponding undoped clean surfaces. Dehydrid-
ing the TiB2H8-nBH4 (n ) 1-2) species would lead to the
formation of TiBn (n ) 2-3), which is consistent with the
experimental observation.10

There are also distinctive discrepancies between Ti-doped
NaAlH4 and Ti-doped LiBH4. First, the bond activation by
Ti in LiBH4 is much less dramatic than that in NaAlH4. In
Ti-doped LiBH4, the inside B-H bonds were only slightly
elongated (about 0.02-0.04 Å) compared with the B-H
bond in the clean surface. In contrast, two inside A-H bonds
in TiAl3H12 of Ti-doped NaAlH4 surfaces were broken, and
the dissociated H atoms were transferred to Ti.14,15 To
understand the electronic origin of the difference, we
analyzed the densities of state (DOSs) of the most stable
interstitial structures (Inter_1) on each Ti-doped LiBH4

surface. The DOSs of TiB2H8-BH4 in the (001) surface,
TiB2H8-BH4 in the (100) surface, and TiB2H8-2BH4 in the
(010) surface were plotted in Figure 3a-c. In each DOS plot,
we included the Ti atom, the boron atoms (B1 and B2) of
the neighboring BH4

- units, and the hydrogen atoms (H4,
H9, and H10) connected with Ti. The bond-activation
difference can be attributed to the back-donation of electrons
from the d orbitals of Ti to antibonding orbitals of the B-H
bond. In the previous analysis of Ti-doped NaAlH4, we
attributed some new peaks at -2 to 0 eV in Al1- and Al2-
DOS to electron backdonation from Ti d orbitals to A-H
antibonding orbitals.17 However, similar electron backdo-
nation was not found in the Ti-doped LiBH4 surfaces,
although electron donation from bonding orbitals of B-H
to the empty orbital of Ti occurred, as shown in low-energy
regions (-8∼-6 eV) of Ti-DOS. A lack of backdonation
in Ti-doped LiBH4 may be due to the considerable gap
between the occupied orbital of Ti and virtual orbitals of
BH4

-. We have demonstrated that the electron back-donation
played a dominant role in H-H and A-H bond activation
in transition-metal-catalyzed NaAlH4.

17 In the case of Ti-
doped LiBH4, the weak backdonation is the main reason for
the observed low reactivity.9,10 Fe and Mo, which have a

Figure 2. Local structures of the most stable species in the Ti-doped (a) LiBH4(001), (b) LiBH4 (100), and (c) LiBH4 (010).

Table 2. Hydrogen Desorption Energies (unit: eV) of the Most Stable Species in Ti-Doped LiBH4 (001), (100), and (010)
Surfaces

triplet TiB2H8-BH4 (001) quintet TiB2H8-BH4 (100) triplet TiB2H8-2BH4 (010)

singlet triplet triplet quintet singlet triplet

H1-H2 1.092 0.915 -0.028 1.749 0.210 0.389
H3-H4 N/A 1.193 0.587 1.664 0.150 0.387
H5-H6 2.477 2.312 0.698 1.896 0.473 0.403
H5-H7 1.363 1.070 0.463 2.520 0.550 0.459
H6-H7 1.217 1.095 0.513 2.246 0.759 0.718
H6-H8 1.219 1.088 0.557 2.790 0.185 0.221
H9-H10 N/A N/A N/A 2.324 0.568 0.480
H9-H11 1.510 1.269 2.089 2.532 0.594 0.527
H10-H11 2.101 1.901 0.551 2.079 0.859 0.718
H10-H12 2.182 2.248 0.528 2.182 0.431 0.320
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stronger backdonation capability from their occupied orbitals
to the virtual orbitals of BH4

-, may be better catalysts to
activate the B-H bonds.47,48

Another difference in the two systems lies in the correla-
tion of stability of local structures with the 18-electron rule.
The XH4

- (X ) B, Al) ligands can act as a two-, four-, and
six-electron donor by coordination of Ti through one, two,
or three X-H bonds.17,19,20,49 Usually, the stability of relaxed
structures can be simply predicted by applying the electron-
counting rule.50,51 The total number of electrons surrounding
Ti can be calculated by adding its valence electrons and the
electrons shared with the ligands. For Ti, 18 electrons are
needed to fill the five d orbitals, one s orbital, and three p
orbitals in order to reach a closed-shell configuration. In some
cases, the complex in a high-spin state accommodates fewer
electrons. For example, a 16-electron complex in a triplet
state is the most stable. Deviation from this number resulted
in less stable structures and, therefore, lower binding
energies.18,19 Unfortunately, the stability order of relaxed
structures in the Ti-doped LiBH4 (001) surface does not
follow this electron-counting rule. There are a total of 14
electrons surrounding the Ti atom in the most stable structure
Inter_1 of the (001) surface. However, the triplet state is
the lower-energy spin-state for Inter_1. Similarly, both
Inter_3 and Inter_4 in the (001) surface have 16 electrons
and are in the quintet state instead of the triplet state.
Therefore, the electron-counting rule is not strictly applicable
in predicting the structural stability of Ti-doped LiBH4.
However, in the TM-doped NaAlH4, the stability of most
structures was found to follow the 18-electron rule.17 The
difference between Ti-doped LiBH4 and NaAlH4 could be
understood by comparing the DOSs of the two systems. In
the Ti-doped NaAlH4, there is a very small gap (about 1.5
eV) from the bonding orbitals of Al-H to the d orbitals of
Ti. Electrons in these orbitals can be shared, thereby

satisfying the closed-shell requirement. On the other hand,
there is about a 4 eV gap between the bonding orbitals of
B-H and the d orbitals of Ti, as shown in the DOS figures
of the Ti-doped LiBH4 surfaces. The large gap makes the
electrons in the B-H bond less available to the empty d
orbitals of Ti.

We explored further the relationship of stability with the
coordination modes of the local structures. First of all, we
focus on a linear TiB2H8 structure (Inter_2) with a dou-
ble η2 coordinate mode. Figure 4 shows schematically the
molecular orbital overlap between two BH4

- ligands and the
central Ti atom. We did not display the low-energy orbitals
formed by the B s orbital and the four remaining H s ones
because they were localized mainly on the ligands and
interact poorly with transition metals. We only showed the
overlaps between Ti d orbitals and ligand orbitals constructed
by B p and H s. Under D2h symmetry, two BH4

- units
generate three types of orbitals with the symmetry b1g, b2u,
and b3u. According to the orbital symmetry-adapting rule,
the ligand orbitals with the symmetries of b2u and b3u only
interact poorly with Ti 4s or 4p orbitals. Therefore, the ligand
orbitals of b2u and b3u contribute little to the stability of
TiB2H8. Although symmetrically allowed, the molecular
orbital HOMO-1 that is constructed by the Ti d orbital and
“outside” B-H bonding orbitals only shows a weak overlap.
On the other hand, the molecular orbital HOMO-5 exhibits
a significant orbital overlap between Ti dxz and “inside” B-H
bonding orbitals. Such an orbital overlap contributes sig-
nificantly to the stability of the structure.

Another linear TiB2H8 structure, Inter_4 in Ti-doped
LiBH4 (001), has a double η3 coordination mode with a
smaller binding energy (-1.581 eV) than that of Inter_2
(double η2, -2.409 eV). We also displayed its molecular
orbitals, showing the interaction between Ti and two ligands
in Figure 4. Under D3h symmetry, two BH4

- units generate

Figure 3. Local densities of state (DOSs) of the H, B, and Ti atoms in the most stable structures, that is, triplet TiB2H8-BH4 in
the (001) surface, quintet TiB2H8-BH4 in the (100) surface, and triplet TiB2H8-2BH4 in the (010) surface.
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three types of orbitals with the symmetries a1′, e′, and e′′.
However, we expect the ligand orbitals with symmetries a1′
and e′ not to make a major contribution to the structural
stability. Only e′′ orbitals generated by the two ligands are
able to overlap with π-type orbitals of Ti. These orbital
overlaps are very small because the ligand orbitals are not
symmetric and some of the electrons are distributed in the
terminal atoms. Therefore, the calculated binding energies
of Inter_4 are much smaller than that of Inter_2. For the
isolated complexes such as Ti(BH4)3, ab initio calculations
have shown that η2 and η3 structures are not much different
in binding energy for some transition metals.23,52-55 Obvi-
ously, there is a large difference of stability related to η2

and η3 ligands between the isolated complexes Ti(BH4)3 and
TiB2H8-nBH4

- in a solid-state environment.

Finally, TiB2H8-nBH4 (n ) 1,2) in Ti-doped LiBH4

surfaces is isolated from neighboring BH4
- units. This is in

direct contrast with the TiAl3H12 structure formed in Ti-doped
NaAlH4 which links to the neighboring AlH4

- units and
facilitates hydrogen desorption and transfer.15 This structure
difference may offer an explanation for the different amounts
of added Ti in NaAlH4 and LiBH4. Experimentally, only ∼4
mol % TiCl3 was needed for NaAlH4,

38,43,56-58 whereas 25
mol % TiCl3 or TiO2 was required to achieve significant
reduction in the hydrogen desorption temperature for
LiBH4.

9,10

4. Conclusions

In the present paper, we have studied the energetics and
structures of Ti-doped LiBH4 (001), (100), and (010) surfaces
using DFT-PBE methods with the plane-wave basis set and
PAW potential. On the basis of our results and analysis, we
conclude the following:

(1) Ti prefers occupying the interstitial positions among
three or four BH4

- hydrides, forming local complex
structures of TiB2H8-nBH4 (n ) 1, 2) with the high-
spin states. The stability of these structures can be
explained by orbital overlap between Ti and “inside”
B-H bonds.

(2) The desorption energies from many positions of these
stable complex structures are reduced significantly
with respect to those from the clean surface. The triplet
TiB2H8-BH4 in (001) and TiB2H8-2BH4 in (010) can
desorb hydrogen in the form of a H2 molecule, while
the quintet TiB2H8-BH4 in (100) preferably desorbs
atomic hydrogen.

(3) A comparison between Ti interaction with B-H and
A-H revealed that the low reactivity of Ti-doped
LiBH4 is a result of the weak back-donation from d
orbitals of Ti to the antibonding orbitals of BH4

-.
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Abstract: Gradient-corrected density functional theory (DFT) computations were performed to
investigate the geometry, electronic property, formation energy, and reactivity of Stone-Wales
(SW) defects in zigzag-edge and armchair-edge boron nitride nanoribbons (BNNRs). The
formation energies of SW defects increase with an increase in the widths of BNNRs and are
orientation-dependent. SW defects considerably reduce the band gaps of BNNRs independent
of the defect orientations. In addition, the local chemical reactivity of SW defects and edge sites
in zigzag-edge and armchair-edge BNNRs was probed with the CH2 cycloaddition reaction.
Independent of the nanoribbon types and the SW defect orientations, the reactions at SW defect
sites are more exothermic than those at the center of perfect BNNRs, and the newly formed
B-B and N-N bonds are the most reactive sites, followed by the 5-7 ring fusions.

1. Introduction

Since its experimental discovery in 2004,1,2 graphene, a
single atomic layer of graphite, has brought us a new
revolution in materials science due to its many charming,
unusual properties.3-6 For example, graphene is the strongest
material ever measured,3 chemically stable and inert, and
conducts electricity better than any other known material at
room temperature.5 These outstanding mechanical, chemical,
and electronic properties have stimulated great interest and
extensive experimental and theoretical research on the
graphene-based materials family.7-31 As one important
member of this family, graphene nanoribbons (GNRs), a new
type of one-dimensional (1-D) graphene-based material, have
been synthesized by cutting the two-dimensional graphene.1

The electronic and magnetic properties of GNRs have been
widely studied.15-31 The tight-binding computational results

showed that, depending upon the width and orientation of
the edges, the H-terminated GNRs can be semiconducting
or metallic.16-18 While more reliable first-principles calcula-
tions revealed a nonzero band gap for GNRs independent
of the width and orientation of the edges.19,24,25 In particular,
this theoretical prediction was confirmed by the recent
experiments.27,28Moreover, thezigzagGNRsaremagnetic,22,24

and applying electric field29 or edge-modifications30,31

renders them half-metallic.

Inspired by the intensive studies on GNRs, researchers
have also broadened the field to inorganic nanoribbons, such
as BN,32 BNC,33 B,34 BC3,

35 B2C,36 SiC,37 ZnO,38 and
MoS2

39 nanoribbons. Among them, as an analogy to GNRs
structurally, BN nanoribbons (BNNRs) have attracted more
attention.32,40-47 Note that single-layer and few-atomic-layer
hexagonal BN sheets have been experimentally realized.48-52

In particular, Meyer et al.51 synthesized the clean single-
layer hexagonal boron nitride graphene and reported atomic
resolution imaging. Zhi et al.52 achieved large-scale fabrica-
tion of boron nitride nanosheets (as thin as three layers), and
these inorganic sheets were utilized to improve thermal and
mechanical properties of the polymeric composites.
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Therefore, similar to the case of GNRs, it is highly possible
that the BNNRs may be synthesized by cutting single-layer
hexagonal BN. Due to the large ionicity of BN, BNNRs may
possess novel properties different from those of GNRs.
Theoretically, perfect BNNRs have been predicted to present
semiconductor behavior, regardless of their width and
orientation of the edges.40 The H-terminated BNNRs are
nonmagnetic,40 while the bare zigzag BNNRs are mag-
netic.32,46 An applied transverse electric field can induce
electron reorganization and control the band gap of bare
zigzag BNNRs to produce a metallic-semiconducting-half-
metallic transition.32 The half-metallicity is also found in
BNNRs with only the B edge passivated with hydrogen.46,47

These open promising opportunities for the application of
BNNRs in electro-optical devices.

Perfect nanomaterials exhibit attractive physical and
chemical properties; however, defects are inevitable in reality,
such as vacancies, adatoms, and topological defects, which
may impact significantly the electronic properties and chemi-
cal reactivity of nanomaterials.53-66 A well-known example
is the Stone-Wales (SW) defect, which is comprised of
two pairs of five-membered and seven-membered rings
(5-7-7-5) formed by rotating one bond of the traditional
six-membered ring by 90°.67 The effect of SW defects on
the electronic and mechanical properties of carbon nanotubes
(CNTs), BN nanotubes (BNNTs), and GNRs has drawn
considerable attention, especially in terms of chemical
reactivity.55,56,61,62,64-66 All of these studies show that the
SW defects play an important role in the structural recon-
struction, electronic properties, and chemical reactivity of
nanomaterials. To the best of our knowledge, however, no
investigations have been performed on the electronic proper-
ties and chemical reactivity of BNNRs with SW defects.

In this study, we carried out systematic first-principles
computations to investigate the formation energies and
electronic properties of zigzag and armchair BNNRs with
SW defects. Because of the stronger reactivity, carbene (CH2)
is used as a probe to examine the chemical reactivity of SW
defect sites in BNNRs with different edges. In particular,
we focus on the effects of the SW defects and defect
orientation on the formation energies, band structures, and
chemical reactivity of these BNNRs.

2. Computational Methods

The generalized gradient approximation with the PW91
functional68 and a 360 eV cutoff for the plane-wave basis
set were employed for all of the DFT computations with the
Vienna ab initio simulation package (VASP).69-72 The
ultrasoft pseudopotentials73 were used to model the electron-
ion interactions. Interactions between SW defects and their
images were avoided in our computational supercell models,
for which the distance between two SW defects is longer
than 10 Å in both zigzag BNNRs (zBNNRs) and armchair
BNNRs (aBNNRs). The edges of BNNRs are terminated by
hydrogen atoms to remove dangling bonds. Five k points
were used for sampling the 1-D Brillouin zone, and the
convergence threshold was set as 10-4 eV in energy and 10-3

eV/Å in force. The positions of all of the atoms in the
supercell were fully relaxed during the geometry optimiza-

tions. On the basis of the equilibrium structures, 21 k points
were used to compute band structures.

Defect formation energies (energies required to form SW
defects) are defined as

where ESW and Eperfect are the total energy of the BNNR
containing a SW defect and that of the perfect BNNR,
respectively. Note that this definition does not take into
account the energy barrier height for the formation of the
SW defect, which may be higher than the calculated
formation energy on the basis of the ground state energy
differences. The reaction energy for the cycloaddition of CH2

group is estimated as

where Etotal, EBNNR, and ECH2
are the total energy of the CH2-

added BNNR, the pristine BNNR, and the CH2 group,
respectively.

3. Results and Discussion

3.1. Geometric Structures of SW Defects in zBNNRs
and aBNNRs. By convention, as shown in Figure 1, the
structures of zBNNRs and aBNNRs are classified by
the number of zigzag chains Nz and dimer lines Na across
the ribbon width, respectively. Figure 2 represents the perfect
and defective structures of 8-zBNNR and 11-aBNNR. There
are two kinds of B-N bonds in zBNNRs and aBNNRs. One
is parallel or perpendicular to the axis, and the other is
slanted. These are denoted by bond “1” and bond “2” in
Figure 2a and d, respectively. Consequently, two types of
SW defects for each of the BNNRs (labeled as SW-1 and
SW-2) are possible via rotating bonds 1 or 2 by 90°, and
new B-B and N-N bonds appear in all of the defective
BNNRs. These new B-B and N-N bonds in 8-zBNNR with
SW-1 (1.663 and 1.433 Å) are slightly shorter than those in
8-zBNNR with SW-2 (1.664 and 1.439 Å), while the
corresponding B-B and N-N bonds in 11-aBNNR with
SW-1 (1.672 and 1.443 Å) are somewhat longer than those

Figure 1. Geometric structure for H-terminated BN nanorib-
bons: (a) zigzag-edged and (b) armchair-edged. The blue,
pink, and white colors represent N, B, and H atoms,
respectively.

EF ) ESW - Eperfect (1)

ER ) Etotal - EBNNR - ECH2
(2)
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in 11-aBNNR with SW-2 (1.668 and 1.435 Å, respectively).
Moreover, the B-N bonds at the 7-7 ring fusions of SW
defects in all defective BNNRs are shorter than those in
perfect BNNRs. For the defective BNNRs, most of the bonds
are slightly longer than the corresponding bonds in BNNTs
with SW defects due to local curvatures of BNNTs.65

Usually, the pyramidalization angle (Θp ) θσπ - 90°) is
used to measure the degree of sp3 hybridization of an atom,
where θσπ is the angle between σ and π bonds.74-76 Note
that perfect BNNRs have no pyramidalization angle because
of their π-conjugated planar structures. However, the Θp

angle can describe the degree of sp3 hybridization for the B
and N atoms at the 7-7 ring fusions of SW defects, where
the B and N atoms are slightly outward from the plane
due to the formation of SW defects (Table 1). Obviously,
these Θp angles may reflect the structural deformation owing
to the defect formation. As shown in Table 1, the respective
Θp angles of the B and N atoms at the SW-1 site are 0.15
and 0.18° for zBNNRs and 0.54 and 0.15° for aBNNRs,
while the corresponding values at the SW-2 site are 0.75
and 1.60° for zBNNRs and 0.18 and 0.62° for aBNNRs,
respectively. Clearly, the orientation of SW defects in
BNNRs has different effects on the Θp angles: independent
of the orientation of the edges in BNNRs, the deviations of
the B and N atoms at the 7-7 ring fusions of SW-1 sites
are less than those of SW-2 sites. Note that deviations can

be directly reflected by Θp angles in BNNRs. These tiny
deviations of the B and N atoms at the 7-7 ring fusions of
SW defects may influence the formation energies of SW
defects in BNNRs. As shown in Table 1, in contrast to the
BNNRs with SW-1, the more deformed BNNRs with SW-2
are more favorable energetically and possess smaller defect
formation energy, independent of the orientation of the edges.

3.2. Formation Energies of SW Defects in zBNNRs
and aBNNRs with Different Widths. The formation ener-
gies of SW defects in CNTs77,78 and BNNTs65 have been
reported, which depend not only on the defect orientations
but also on the tube radii. It has been pointed out that SW
defects form with more difficulty in larger-diameter BNNTs

Figure 2. Optimized structures of BNNRs: (a, d) perfect and (b/e, c/f) with various SW defects.

Table 1. Bond Lengths, Pyramidalization Angles, and
Formation Energies Related to SW Defects in 8-zBNNRs
and 11-aBNNRs

Θp (degree)

species dB-N (Å) dB-B (Å) dN-N (Å) Ba Nb EF (eV)

zBNNRs perfect 1.446c

1.443d

SW-1 1.353e 1.663 1.433 0.15 0.18 6.50
SW-2 1.363e 1.664 1.439 0.75 1.60 6.31

aBNNRs perfect 1.448c

1.446d

SW-1 1.365e 1.672 1.443 0.54 0.15 6.30
SW-2 1.367e 1.668 1.435 0.18 0.62 5.96

a The B atom at the 7-7 ring fusions of SW defects. b The N
atom at the 7-7 ring fusions of SW defects. c Bond 1. d Bond 2
(see Figure 2a and d). e The B-N bonds at the 7-7 ring fusions
of SW defects.

Figure 3. Formation energies of SW defects as a function of
the widths of BNNRs: (a) zBNNRs and (b) aBNNRs.
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and CNTs.65,78 Also, in the BN graphene sheet, the formation
energy of SW defects is up to 7.28 eV.65 Naturally, it can
be expected that forming SW defects in BNNRs will be more
difficult than in BNNTs,65 which is supported by our present
computations.

We computed the formation energies of SW defects in
zBNNRs and aBNNRs as a function of the ribbon width
(Figure 3), for which both kinds of SW defects (SW-1 and
SW-2) in a series of zBNNRs and aBNNRs with various
widths (Nz ) 6, 8, 10, 12 and Na ) 11, 13, 16, 19) were
considered. Our computations show that the formation
energies of both SW-1 and SW-2 increase with increasing
widths of zBNNRs and aBNNRs (Figure 3). The narrowest
ribbons have the lowest formation energies of SW defects,
which are 6.14 eV for SW-1 in 6-zBNNR, 5.90 eV for SW-2
in 6-zBNNR, 6.30 eV for SW-1 in 11-aBNNR, and 5.96 eV
for SW-2 in 11-aBNNR. When their widths are the same,
the formation energies of SW-1 are always larger than those
of SW-2 in all of the zBNNRs and aBNNRs. Obviously,
the orientation of the SW defect has different effects on the
formation energies of both zBNNRs and aBNNRs. The SW-2
defect is closer to the edges than SW-1 defect in both types
of BNNRs (Figure 2). Consequently, the SW-2 defect is
easier to form than the SW-1 defect due to the easier

deformation of the edge, and the more deformed BNNRs
with SW-2 defect possess a smaller formation energy, as
shown in Table 1.

3.3. Band Structures of zBNNRs and aBNNRs with
SW Defects. Similar to BNNTs,65 the electronic band
structures of perfect and defective zBNNRs and aBNNRs
show typical semiconductor behavior (Figure 4). The perfect
BNNRs display a 4.56 eV direct band gap for 11-aBNNR
and a 4.28 eV indirect band gap for 8-zBNNR (Figure 4a
and d), which are reasonably consistent with the results
reported by Du et al.40

Previous theoretical studies pointed out that the electronic
band structures of BNNTs can only be modified slightly at
the presence of some defects.57-59,65 However, different from
the BNNTs with SW defects,65 the formation of SW defects
in BNNRs has significant effects on their electronic band
structures, although all of the BNNRs with SW defects still
retain typical wide-band-gap semiconductor character. As
shown in Figure 4, introducing SW defects in perfect BNNRs
leads to new levels of the top valence band and the bottom
conduction band. Consequently, the band gaps of BNNRs
with SW defects are reduced significantly, by 0.71, 0.65,
1.00, and 1.03 eV, respectively, for 8-zBNNR with SW-1,
8-zBNNR with SW-2, 11-aBNNR with SW-1, and 11-

Figure 4. Band structures of 8-zBNNRssperfect (a), with SW-1 (b), and with SW-2 (c)s11-aBNNRs: perfect (d), with SW-1 (e),
and with SW-2 (f).
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aBNNR with the SW-2 defect. The orientation of SW defects
has almost no effect on the band gap reduction of zBNNRs
and aBNNRs.

To clearly examine the character of these new levels in
defective BNNRs, we plotted the electron density isosurfaces
of the valence bands and conduction bands of perfect and
defective BNNRs (Figure 5). For the perfect zBNNR, its top
valence band is mainly from N atoms close to and on the N
edge, while its bottom conduction band is mainly from the
B atoms of the B edge; in contrast, for perfect aBNNR, the
top valence band and bottom conduction band originate from
almost all of the N atoms and all of the B atoms, respectively.
Obviously, the edge orientation of perfect BNNRs affects
the composition of their top valence bands and bottom
conduction bands. In comparison with perfect BNNRs, for
all of the defective BNNRs, independent of the edge and
defect orientation, the top valence bands originate mainly
from the N atoms in the N-N bonds at the SW defects sites,
while the bottom conduction bands are mainly from the B
atoms in the B-B bonds at the SW defects sites. Obviously,
the reduction of the band gap of BNNRs with SW defects is
due to the localized defect states appearing within the gap
of the pristine BNNRs, instead of the shifting of the original
valence and conductance bands. This is similar to the case
of the BNNTs with SW defects reported by Li et al.65

However, compared with the defective BNNTs, BNNRs with
SW defects show a much larger reduction of band gaps,
which indicates that the newly formed N-N bonds and B-B

bonds of SW defect sites are more unfavorable due to the
planar structures of BNNRs.

Additionally, the introduction of SW defects obviously
reduces the band gaps of defective BNNRs, which implies
that the band gap of BNNRs is not so robust. As a result, it
is reasonable for us to suppose that the band gap of BNNRs
may be further reduced, even close to having metal behavior,
such as by chemical modification. These interesting electronic
properties will make BNNRs promising materials for many
potential applications, particularly in nanoelectronics.

3.4. Chemical Reactivity of SW Defects in zBNNRs
and aBNNRs. Defects sites are usually considered as the
center of chemical reactions in nanomaterials. The chemical
reactivities of SW defects in CNTs and BNNTs have been
widely investigated,61,62,64,65,79,80 in which some small
species such as CH2, O, O3, and CO are deemed to be
excellent adsorbates due to their high reactivity. A previous
theoretical study, reported by Lu et al., indicated that the
central C-C bond of the SW-defect site in CNTs is less
reactive than all of the other sites.61 However, An et al. found
that the SW defects in BNNTs are more reactive than
the perfect sites.64 These different chemical reactivities are
related to the local deformation, characterized with the
pyramidalization angles Θp of the involved atoms. The
increased Θp angle has a significant contribution to high
chemical reactivities.

In this work, carbene cycloaddtions were used to probe
the chemical reactivity of SW defect sites in zBNNRs and
aBNNRs. Some characteristic sites related to SW defects
were considered, as well as two sites on the edges of perfect
and defective BNNRs, because the edge plays an important
role in nanoribbons.26,27 All of the addition sites on the
perfect and defective BNNRs with the different edges are
illustrated in Figure 6. Some typical structures of CH2

cycloaddition to perfect BNNRs and the B-B, N-N, and
7-7 ring fusion sites in defective BNNRs are shown in
Figure S1 (Supporting Information). Our calculated reaction
energies in Tables 2 and 3 reveal that these CH2 cycload-
ditions are favorable thermodynamically. The chemical
reactivities of the B-N bonds on edges are higher than those
in the center for perfect BNNRs. In defective BNNRs, the
chemical reactivities of the bonds related to SW defects
are comparable to or even higher than those of the bonds on
the edges due to the existence of tiny pyramidalization angles
for the related atoms in SW defect sites. In particular, the
newly formed B-B and N-N bonds are the most reactive
sites in defective BNNRs due to their energetically unfavor-
able character. Among all of the sites including 7-7, 6-7,
5-7, and 5-6 ring fusions, the chemical reactivity of 5-7
ring fusion sites (sites 4 and 5) are higher than those of other
sites, followed by 6-7 ring fusion sites. All of the above
results are independent of the type of BNNRs.

4. Conclusion

SW defects in a series of zBNNRs and aBNNRs were
investigated by means of DFT computations. By rotating
different B-N bonds, two kinds of SW defects (named SW-1
and SW-2) for zBNNRs and aBNNRs were considered. The
formation of the SW defects in all BNNRs changes the local

Figure 5. Electron density isosurfaces of the highest-energy
valence (v) and the lowest-energy conduction (c) bands of
perfect and defective zBNNRs and aBNNRs.
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curvature at defect sites and results in small pyramidalization
angles of the related atoms. Compared with BNNTs, BNNRs
show larger formation energies of SW defects due to their
planar structures. The SW orientations have an impact on
their formation energies, and SW-2 defects are preferred
energetically over SW-1 defects in BNNRs, independent of
the edge orientation. The chemical reactivity of SW defects
in BNNRs was investigated by using the CH2 cycloaddition
reactions. All of the CH2 cycloadditions in perfect and
defective BNNRs are exothermic and favorable thermody-

namically. The reactions at SW defects sites are more
exothermic than those in the center of perfect BNNRs. The
newly formed B-B and N-N bonds are the most re-
active sites, followed by the 5-7 ring fusions, irrespective
of the types of ribbon edges. Moreover, independent of the
SW defect orientation, the formation of SW defects signifi-
cantly narrows the energy gaps of the defective BNNRs,
though they still retain typical wide-band-gap semiconductor
behavior. It is indicated that the band gap of BNNRs is not
so robust, and it is highly possible to further reduce their

Figure 6. Possible sites for cycloadditions of CH2 to perfect and defective BNNRs: (a-c) for zBNNRs and (d-f) for aBNNRs.

Table 2. CH2 Cycloaddition Reaction Energies (eV) on
Corresponding Sites (Figure 6a-c) in the Perfect and
Defective 8-zBNNRs

reaction sites perfect SW-1 SW-2

1 -1.60 -2.27 -2.22
2 -1.62 -4.62 -4.54
3 -2.33 -4.81 -4.64
4 -2.02 -2.93 -3.13
5 -3.13 -2.79
6 -2.07 -2.12
7 -2.36 -2.20
8 -2.42 -2.46
9 -2.53 -2.24
10 -3.03 -2.27
11 -2.08 -2.49
12 -2.06 -2.89
13 -2.43
14 -2.06

Table 3. CH2 Cycloaddition Reaction Energies on
Corresponding Sites (Figure 6d-f) in the Perfect and
Defective 11-aBNNRs

reaction sites perfect SW-1 SW-2

1 -1.62 -2.22 -2.09
2 -1.62 -4.45 -4.38
3 -2.45 -4.69 -4.51
4 -2.36 -2.77 -2.89
5 -3.08 -2.63
6 -2.12 -1.97
7 -2.16 -2.14
8 -2.40 -2.33
9 -2.02 -2.07
10 -2.13 -2.52
11 -2.40 -2.52
12 -2.58 -2.82
13 -2.47 -1.97
14 -2.42 -2.34
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band gap by chemical modification. These findings are useful
to design new nanodevices on the basis of BNNRs.
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Abstract: The effect of relocation of the W2 crystallographic water in bovine rhodopsin has
been investigated by comparing and analyzing simulated resonance Raman spectra of 1HZX-
and 1U19-based quantum mechanics/molecular mechanics (CASSCF/MM) models. The main
target is to explore the sensitivity of the simulated resonance Raman spectra to protein cavity
change. In particular, we focus on a quantitative investigation of the changes in the vibrational
activity of rhodopsin induced by modifications in the protein cavity structure and in the water
position. Comparison of the simulated RR spectra of the Rh-1U19 and Rh-1HZX models with
the measured spectrum of rhodopsin reveals that the Rh-1U19 model provides a slightly better
rhodopsin model consistently with the simulations of the absorption maxima. On the other hand,
and irrespective of the comparison with the experimental data, the analysis of two different
computational models for the same protein and chromophore makes it possible to investigate
and disentangle the relationship between structural features and change in the RR intensities
in an unusually detailed way.

Introduction

The visual pigment rhodopsin is a G protein-coupled receptor
responsible for dim-light vision in vertabrates. Rhodopsin
contains an 11-cis retinal chromophore bound to a lysine
residue via a protonated Schiff base linkage (PSB11). The
biological activity of rhodopsin is triggered by the ultrafast
light-induced cis-trans isomerization of the chromophore
that initiates the vision process. The isomerization reaction
is very efficient and extremely fast - the chromophore
isomerizes to the all-trans photoproduct within a few
picoseconds and with a quantum yield of 0.67.1

Since Palczewski and co-workers reported the first X-ray
crystal structure of bovine rhodopsin at 2.8 Å resolution

(1F88), there has been an ever increasing interest in
diffraction studies on rhodopsin. Indeed, a year later, an
improved model (1HZX) from the same groups3 revealed
some missing residues from the original structure. 1HZX
contains only one internal water molecule (W1), positioned
between PSB11 and the Glu181 residue. Soon after, two
additional crystallographic structures, resolved at 2.64 and
2.2 Å5 (1L9H and 1U19, respectively), were deposited in
the ProteinDataBank archive. The 1HZX location of W1 is
retained in 1L9H and 1U19. However, both 1L9H and 1U19
report a newly identified water molecule (W2) placed close
to PSB11 and the chromophore carboxylate counterion
Glu113. It is believed that internal water molecules may have
an important role in regulating the activity of rhodopsin.4

A recent computational study on bovine rhodopsin6 has
investigated the effect of relocation of the W2 crystal-
lographic water by comparing and analyzing the vertical
excitation energy of the 1HZX- and 1U19-based quantum
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mechanics/molecular mechanics models (see Figure 1). Using
CASSCF/Amber optimized structures of such models and
subsequent single-point CASPT2//CASSCF/Amber computa-
tions the authors have been able to compute a red-shifting
effect moving the absorption maximum from 479 nm (59.8
kcal ·mol-1 vertical excitation energy) for the 1HZX-based
model (Rh-1HZX) to 513 nm (55.7 kcal ·mol-1 vertical
excitation energy) for the 1U19-based model (Rh-1U19).
Since the observed absorption maximum is 498 nm (57.4
kcal · mol-1 vertical excitation energy) the 1U19-based model
leads to a smaller -1.8 kcal ·mol-1 red-shifted error. A
comparative analysis of the two models reveals that the
change in absorption maximum is not due to a single
structural change such as W2 relocation but to simultaneous
changes in the PSB11-counterion distance and to a substantial
PSB11 chain displacement within the (modestly) different
protein cavity structures.

Resonance Raman (RR) spectroscopy is a powerful
experimental technique for probing the structural changes
of chromophores. In fact, even limited changes in the
chromophore structure, or in the relationship of the chro-
mophore with its environment, usually result in clear changes
in the spectrum vibrational pattern and intensities. RR spectra
are generated via electronic excitation in the Franck-Condon
vicinity and display the intensity of vibrational modes
coupled to the electronic transition. Moreover, RR spectra
provide detailed information on the difference of the ground
and excited state molecular structures of the chromphore as
well as on its initial excited state dynamics. In the past, the
RR studies of the PSB11 retinal chromophore of rhodopsin
were very useful in identifying the photoreaction intermedi-
ates and the initial excited-state dynamics of the photoi-
somerization process.1 In these studies the effect of the
protein environment was scrutinized by comparing the RR
spectra of PSB11 in solution and in the protein.7-9

In this article we report simulations of RR spectra of
rhodopsin for Rh-1HZX and Rh-1U19 models (Figure 1)
using the CASSCF/Amber method to calculate the ground

state force field. The main target is to explore the sensitivity
of the simulated RR spectra to protein cavity changes. In
particular, we focus on a quantitative investigation of the
changes in the vibrational activity of rhodopsin induced by
modifications in the protein cavity structure and in the water
position. A comparison of the simulated RR spectra of Rh-
1U19 and Rh-1HZX models reveals that there are non
negligible differences in vibrational frequencies and intensity
distribution in both spectra. The results also show that the
Rh-1U19 model allows for a slightly more detailed reproduc-
tion of the experimental RR spectrum consistently with the
simulations of the absorption maxima. On the other hand,
and irrespective of the comparison with the experimental
data, the analysis of two different computational models for
the same protein and chromophore makes it possible to
investigate and disentangle the relationship between structural
features and change in the RR intensities in an unusually
detailed way.

Models and Methods

The first model (Rh-1HZX) investigated in this study is based
on monomer A of 1HZX crystal structure. In addition to one
internal water molecule present in the original protein
structure, the second internal water molecule was introduced
following a suggestion by Kandori et al.10 This model was
utilized in our early studies on rhodopsin.11-13 The second
model (Rh-1U19) was prepared, using the same procedures,
from 1U19 crystal structure that comprises two resolved
water molecules close to the chromophore binding site. As
displayed in Figure 2, the position of W2 in Rh-1U19 differs
significantly from that seen in Rh-1HZX. Even though W2
is invariably hydrogen-bonded to the O1 carboxylate oxygen
of Glu113 counterion in both structures, its position is
strongly shifted to the opposite side of Glu113 in Rh-1U19
relative to Rh-1HZX models.

The retinal chromophore bears a net positive charge
counterbalanced by a negative charge of Glu113 residue. The

Figure 1. 11-cis retinal frameworks with Glu113 and W1 and W2 molecules. The ground-state optimized structure on the left
corresponds to Rh-1HZX, while the structure on the right corresponds to Rh-1U19. Dihedral angles (in degrees) are indicated
in pink. Some critical distances between W2 water and the Schiff base region and/or the counterion are in blue (in Å).
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rest of the protein cavity is set to neutral. Even though there
is conflicting evidence in the literature regarding the pro-
tonation state of Glu181 residue,14-20 a recent study by Hall
et al.21 has shown that changing the protonation state of
Glu181 has a rather minimal effect on properties of PSB11
in rhodopsin. The average equilibrium structure of the
rhodopsin models is generated via geometry optimization by
relaxing the chromophore, Lys296 residue, and the two
TIP3P-type water molecules, while the rest of the protein is
kept frozen in its X-ray position during optimization
procedure. Such a fixed structure is taken as representative
of the average protein environment. With the exception of
Lys296, the residue charges are described by the standard
Amber force field.22

Recently we have shown that CASPT2//CASSCF/MM
calculations provide a quantitative evaluation of structural
and spectroscopic parameters for rhodopsin,11-13 GFP,23 and
retinal-based molecular switches.24,25 Also, previous CASSCF/
Amber studies on the RR spectrum of Rh-1HZX13 showed a
relatively good agreement with the experimental spectrum.8

However, a modest basis set (3-21g*) used in these studies
resulted in significant blueshift of the most intense band in
the calculated spectrum with respect to the measured one.8

Therefore, in our present CASSCF simulations of the Rh-
1HZX RR spectrum we have employed a more extensive
basis set (6-31g*) than before.13 Additionally, it should be
pointed out that the RR spectrum of Rh-1U19 has been
simulated for the first time. The effect of isotopic substitution
and normal mode composition analysis was done to aid in
the assignment of experimental bands. The wavenumber
shifts were calculated upon C10-D, C14-D, 10,11-13C, 14,15-
13C, and N-D substitution and compared with those measured
previously7 in RR experiments. Potential energy distribution
(PED) contribution to each of the calculated vibrational
frequency gives insight into the normal mode composition
which in turn aids in the assignment of the measured
resonance Raman bands. Veda426 software was used to
perform PED analysis.

We have calculated Raman intensities under resonant
conditions applying a sum-over-states formalism developed
by Albrecht27 where the transition polarizibility tensor is
written as

In eq 1 the sum runs over all electronic |e〉 and vibrational |V〉
states, |i〉 and |f〉 are initial and final vibrational states, respec-
tively, of the electronic ground state, while |k〉 is an intermediate
vibrational state of the electronic excited state, Ω is the
frequency of the incident light, Egi, Eek, and Egf are vibronic
energies of initial, intermediate and final states, Γek is a damping
factor associated with the gfe electronic transition, and µge/eg

F/σ

is the electronic transition dipole moment.
Upon expanding the transition dipole moments in the

Taylor series in terms of the molecular normal modes and
ignoring the vibronic coupling effects, the Franck-Condon
(FC) mechanism can be described by the following expression

If only one electronic excited state contributes to the Raman
scattering eq 2 simplifies to

where µge/eg
F0/σ0 is a pure electronic transition dipole moment.

By adapting harmonic approximation and identical vibra-
tional frequencies and normal coordinates in the ground and
excited electronic states it is possible to calculate the FC
overlap from recursion formulas given in ref 28. Subse-
quently, the square of the transition polarizibility is propor-
tional to the dimensionless parameter Bk through the relation29

and this in turn is related to the RR intensity of the kth
vibration

Dimensionless displacements Bk of the potential energy
surface minima along the k totally symmetric vibrational
modes are defined as29-31

where Sk is a 3N-dimensional vector containing the Cartesian
nuclear displacements in Qk normal mode with the associated

Figure 2. Superposition of the ground-state optimized Rh-
1HZX (in silver) and Rh-1U19 (in blue) 11-cis retinal chro-
mophores. Notice a different orientation of the W2 molecule
in both rhodopsin models.
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frequency ωk and reduced mass µk. ∆X is the 3N-dimensional
vector containing the differences of the nuclear position
vectors in the resonant and ground electronic states.30,31

There have been successful attempts to calculate RR
spectra using Kramers-Kronig transform procedure which
eliminates the need for explicit summation over intermediate
vibrational levels.32-36 An alternative to the sum-over-states
formulation is the Heller’s time-dependent approach.37-39

In the “short-time” limit of the time-dependent approach36,37

which applies to preresonance conditions or fast electronic
relaxation the relative intensities are given by

where ωk is the frequency of the kth vibration and dimen-
sionless parameters Bk are calculated from the excited-state
gradients. Thus, within this approximation no explicit
knowledge of the excited-state equilibrium structure is
required.

Based on eqs 5 and 7 it is clear that to evaluate the
resonance Raman intensities we need dimensionless param-
eters. These in turn can be calculated having the equilibrium
geometries of the ground state and the excited state (or
excited-state gradient at the ground state equilibrium geom-
etry) in resonance with the excitation wavelength as well as
the vibrational frequencies at the ground state equilibrium
geometry.

The QM/MM employed in this study is fully described in
ref 11. In short, the QM subsystem consists of retinal and
the last bond of Lys296 side chain. We use a hydrogen link-
atom scheme with the frontier placed at the Cε-Cδ bond of
the Lys296. The ab initio calculations are based on the
CASSCF level of theory. In the optimization step the 6-31G*
basis set was used, while the 3-21G* basis set was chosen
to obtain second-derivatives. In the geometry optimization
procedure the active space comprises the full π-system of
PSB11 (12 electrons in 12 π-orbitals), which is reduced to
8 electrons in 8 orbitals during the frequency calculations.
Accordingly, in the latter the 2 lowest occupied and 2 highest
unoccupied retinal π-orbitals were excluded from the active
space. CASSCF/MM geometry optimization of the ground
state and optically allowed excited state rhodopsin structures
as well as frequency calculations in the ground state were
carried out with the programs Gaussian0340 and Tinker.41

In calculations of resonance Raman intensities for Rh-
1U19 we used the sum-over-states approach described by
eq 3. Since eq 5 is often employed in simple estimation of
RR intensities of large molecules we compared a spectrum
resulting from eq 5 with the more accurate one obtained from
eq 3. Furthermore, the “short-time” approximation is also
applied to model Raman spectrum of Rh-1U19. We examined
some possible approximations originating from the sum-over-
states as well as from the “short-time” approaches by
comparing the resulting simulated RR spectra to each other
and to the experimental spectrum. Notice that eq 3 provides
the possibility of calculating RR intensities not only for
fundamentals but also for overtones and combination bands;
however, it significantly increases the computational effort.
On the other hand, the two other methods described above

are much more efficient but can only be used to obtain
intensities of fundamentals.

The qualitative difference between simplified sum-over-
states and “short-time” approaches is illustrated in Figure
S1 (Supporting Information). Spectra A and B obtained with
the use of sum-over-states relations (eqs 3 and 5, respec-
tively) combined with Bk calculated from the shift between
the excited state and ground state equilibrium positions reveal
very similar intensity distribution. It is interesting to note
that fundamentals and overtones do not manifest themselves
in the 700-1750 cm-1 frequency region of spectrum A
(Figure S1 (Supporting Information)). On the other hand,
comparison of spectra A and B with the spectrum determined
from the “short-time” approximation (spectrum C) based on
the excited state gradient’s Bk reveals subtle changes in the
intensity pattern of the 900-1050 cm-1 frequency region,
notably a band at around 940 cm-1 which is extremely weak
in spectrum C, while in other theoretical and experimental
spectra8 it brings substantial intensity. Moreover, the intensity
of the 1632 cm-1 band is exaggerated in comparison to its
experimental counterpart. Overall, the simulated spectra
originated from simplified approaches are amazingly similar
to the spectrum obtained from more demanding the sum-
over-states approach expressed by eq 3. In light of these
findings we will use eq 5 to calculate RR spectra of Rh-
1U19 and Rh-1HZX.

To improve the agreement between calculated and ex-
perimental frequencies we used a scaling factor for CASSCF-
based frequencies equal to 0.9 to account for errors due to
incomplete treatment of dynamic electron correlation, basis
set truncation, modest active space, and anharmonic effects.
The spectra were obtained as superpositions of the Lorentzian
curve with the line width of 10 cm-1.

Results and Discussion

As discussed above, Strambi et al.6 have analyzed the
sensitivity of the absorption maxima of rhodopsin to the
change in the crystallographic structure (mainly differing for
the relocation of one of the internal water molecules). To
do so, they have calculated the ground state equilibrium
structures as well as the excitation energies for the Rh-1HZX
and Rh-1U19 models. Inspection of Figure 2 shows that the
W1 position is hardly changed in the models. On the other
hand, in Rh-1HZX, W2 forms a single hydrogen bond with
the O1 carboxylate oxygen of Glu113 whereas, in Rh-1U19,
W2 is hydrogen-bonded to both O1 and to the oxygen of
the nearby peptide bond. It is interesting to note that a major
relocation of W2 water molecule in Rh-1U19 while leading
to a large (0.7-0.8 Å) decrease in the -C)NH(+)----O1(-)
salt-bridge distancesexposing the -C)NH(+) to a more
negative electrostatic potentialsdoes not dramatically affect
the excitation energy.6 This is explained with the relocation
of the retinal chain shown in Figure 2 where we report a
superimposed PSB11 structure in Rh-1HZX and Rh-1U19.
Indeed the computed change in the cavity generated elec-
trostatic potential6 points to a compensation mechanism
where the shifting of the -C)NH(+) chromophore position
in Rh-1U19 with respect to Rh-1HZX results in the exposure
of such moiety to a more positive electrostatic potential that

Ik ) ωk
2Bk

2 (7)
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overcompensates the effect of the closer O1 counterion
negative charge. While such an effect is responsible for a
ca. 4 kcal ·mol-1 decrease in vertical excitation energy,6 we
want to determine if this effect is also accompanied by a
change in the RR spectra of the corresponding models. In
other words, a large change in hydrogen-bonding of the
chromophore shall manifest itself in altered vibrational
frequencies and/or intensities of specific vibrational modes
and thus can be conveniently investigated by comparing the
vibrational activity of RR spectra for both rhodopsin models.

The RR spectra of both models are reported in Figure 3
together with the observed spectrum. As it was shown by
Mathies and co-workers the most characteristic parts of the
resonance Raman spectrum of bovine rhodopsin are (1) the
ethylenic band observed between 1500 and 1650 cm-1, (2)
the structurally sensitive fingerprint region observed in the
1100-1350 cm-1 frequency range, (3) the hydrogen out-of-
plane (HOOP) region observed in the 900-1100 cm-1

frequency range, and (4) the low-frequency region compris-
ing of torsional modes associated with the isomerization
reaction.8

The high-frequency region of the Rh-1HZX model is
qualitatively similar to that of Rh-1U19 (Figure 3). There
are two strong lines at 1556 and 1542 cm-1 in the former
that correspond to peaks at 1545 and 1536 cm-1 in Rh-1U19.
These intense lines are assigned to an in-phase stretching of
the C11dC12 bond combined with the C9dC10 stretch. The
ethylenic stretching frequency in Rh-1U19 is shifted down
by 11 cm-1 from the frequency in Rh-1HZX, and this is

consistent with a red-shift of its absorption.6 This frequency
downshift also corresponds well to the increase in the
C11dC12 and C9dC10 distances by 0.004 and 0.003 Å,
respectively, going from Rh-1HZX to Rh-1U19. In the
experiment8 the lower-intense line was not detected, so it
may be hidden under the fairly broad band at 1548 cm-1.
Consistently with Rh-1HZX, there is also a weaker line
calculated on the left wing of the 1545 cm-1 band in Rh-
1U19. This band is shifted by 6 cm-1 relative to the
frequency in Rh-1HZX (1542 cm-1) and is due to noticeable
contribution from the C13dC14 stretch.

The frequency of the CdN stretching is considered to be
a sensitive probe of the Schiff base-protein interactions in
rhodopsin.1 Strambi et al.6 have demonstrated that relocation
of one internal (W2) water molecule in Rh-1U19 results in
a strongly reduced C)NH(+)----O1(-) salt-bridge distance
that must induce a decrease in double bond delocalization, an
increase in vertical excitation energy, and a modified hydrogen-
bond network. As explained above, such effects are more than
counterbalanced by an effective PSB11 displacement to a region
with a larger protein-generated positive potential that explains
the calculated red-shift relative to the Rh-1HZX model. Indeed,
the CdN stretching mode in Rh-1HZX was obtained at 1640
cm-1, while in Rh-1U19 at 1632 cm-1 and likely corresponds
to the band at 1655 cm-1 in the measured spectrum.8 However,
it is interesting that the calculated frequency shift induced by
N-deuteration, which is 42 cm-1 in Rh-1U19, drops to 24 cm-1

in Rh-1HZX (experimental shift is in a range of 31-35 cm-1)7,49

implying much stronger coupling of the CdN stretch with the
N-H bending vibration in Rh-1U19. The considerably lower
frequency shift predicted for Rh-1HZX can be ascribed to the
weakened Schiff base hydrogen bonding in the Rh-1HZX model,
in accordance with recently calculated structural data.6,12

The frequencies of C-C stretches are sensitive to local
geometry and thus provide valuable information on the
conformation of retinal.1,8 The fingerprint region is charac-
terized by single-bond C-C stretching modes and spans
1100-1350 cm-1 spectral range. In the calculated resonance
Raman spectra of both Rh-1HZX and Rh-1U19 two modest
bands are observed at 1188 and 1128 cm-1 in the former
and 1198 and 1132 cm-1 in the latter (Figure 3 and Table
1). For Rh-1HZX, the 1188 cm-1 mode can be assigned to
the C8-C9 stretch, while the 1184 cm-1 mode can be
assigned to the C12-C13 stretch. The corresponding modes
in Rh-1U19 are upshifted by 10 and 4 cm-1, respectively. A
normal-mode analysis in this region is obscured by the fact
that C-C stretches are strongly delocalized over the dis-
cussed fingerprint modes and thus difficult to assess in terms
of local mode coordinates in agreement with previous DFT-
based vibrational study.43 However, the assignment was
facilitated by calculating the positions of the fingerprint
modes for the isotopically labeled analogues of Rh-1HZX
and Rh-1U19. In fact, the C12-C13 stretch can be assigned
with confidence at 1184 cm-1 in Rh-1HZX (1188 cm-1 in
Rh-1U19) as only this line does exhibit the characteristic
coupling with C14H bending, shifting up by 33 cm-1 in
C14D derivative (38 cm-1 in Rh-1U19). Similarly, the 1188
cm-1 mode in Rh-1HZX (1198 cm-1 in Rh-1U19) can be
characterized as the C8-C9 stretch based on the 33 cm-1 (32

Figure 3. Simulated resonance Raman spectra for Rh-1HZX
and Rh-1U19 and their comparison with the experimental
spectrum.7
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cm-1 in Rh-1U19) upshift upon C10D substitution. The
C10-C11 stretch in Rh-1HZX is predominantly localized at
the 1058 cm-1 mode on the basis of its 11 cm-1 downshift to
1047 cm-1 in 10,11-13C derivative. Also, the same magnitude
of the shift in the 10,11-13C spectrum of Rh-1U19 indicates
that the 1055 cm-1 mode is of C10-C11 character. A very
weak C10-C11 line seen in the experimental spectrum8 at 1098
cm-1 does have a negligible intensity in the calculated spectra.
In Rh-1U19 contribution from the C14-C15 single bond can
be found in numerous modes; however, the mode with the
strongest intensity is located at 1132 cm-1. This mode becomes
even stronger in Rh-1HZX. The assignment of the C14-C15
stretch at 1128 cm-1 is strongly supported by the 24 cm-1 (22
cm-1 in Rh-1U19) isotopic shift in the 14,15-13C derivative in
good agreement with the 22 cm-1 experimental shift.7 Never-
theless, the calculated C14-C15 stretching frequency in both
Rh-1HZX and Rh-1U19 is considerably lower than the measured
value (ca. 60 cm-1)8 reflecting the exaggerated contribution
from C-C-H and C-N-H bending motions. A prominent
band calculated at ca. 1290 cm-1 in both cavities can be
attributed to the 1268 cm-1 11H-12H rocking, totally sym-
metric motion. The intensity of this mode calculated for Rh-
1HZX and Rh-1U19 is too strong relative to the corresponding
ethylenic band when compared to the experimental intensity
pattern.8

The analysis of the vibrational activity applied to the
1100-1650 cm-1 region shows a dramatic intensity increase
of the line assigned to the C14-C15 stretching mode as
compared to the intensities of the C8-C9 and C12-C13
stretchings when going from Rh-1U19 to Rh-1HZX. Although
the calculated RR intensities of the bands ascribed to C8-C9,
C12-C13, and C10-C11 stretchings are too weak in
comparison to the measured values,8 these data indicate that
the intensity pattern of the fingerprint region in the RR
spectrum of Rh-1U19 reveals closer agreement with the
observed spectrum. It is interesting to note that the frequen-
cies of the corresponding C-C stretching modes decrease,
while the frequency of the corresponding ethylenic mode
increases in Rh-1HZX relative to Rh-1U19, thus reflecting
more delocalized electronic structure of the red-absorbing
Rh-1U19 (Table 1).

In our studies we have selected a single scaling factor for
all normal-mode frequencies; however, one may notice a

rather interesting patternsthe frequencies of the C-C
stretches are consistently 16-62 cm-1 downshifted relative
to the experimental values. A rationale for the red-shifted
C-C frequencies is the CASSCF tendency to lengthen the
C-C single bonds in retinal backbone.44 On the other hand,
there is no anticipated blueshift of the in-phase CdC
frequency in both rhodopsin models (3 cm-1 decrease in Rh-
1U19 and 8 cm-1 increase in Rh-1HZX) as compared to the
observed value,7 despite the fact that CASSCF-based CdC
bonds are strongly strengthened in relation to experimental
data.5 However, the inclusion of a dynamic correlation energy
through denisity functional theory (DFT) frequency calcula-
tions on the CASSCF-derived equilibrium structures of both
rhodopsin models shifts the calculated frequency of the
C11dC12 stretching mode above the measured value up to
1557 cm-1 in Rh-1U19 and 1567 cm-1 in Rh-1HZX.50

Moreover, reduced active space in the CASSCF calculations
and consequently unbalanced electron correlation as well as
modest basis set also have a large impact on the systematic
deviation of the calculated frequencies and the measured
ones. To refine C-C vibrational frequencies one would have
to derive a set of scaling factors, but this is beyond the scope
of the present work.

In contrast to the fingerprint modes, HOOP modes are
highly localized, and their assignment becomes straightfor-
ward. Since the relative intensity of these modes is sensitive
to structural perturbation it does provide information on
protein-chromophore interactions in rhodopsin,7,8 rhodopsin
intermediates,45-48 and other visual pigments.42,49 The
spectrum of Rh-1HZX is characterized by strong bands at
1015, 982, 960, and 947 cm-1 that have their counterparts
in Rh-1U19 spectrum at 1013, 990, 958, and 941 cm-1. The
bands at ca. 1130 cm-1 are assigned to methyl rocking
vibrations. The calculations predict that the 990 cm-1 mode
contains HOOP and torsional character of the C11dC12
bond. This mode was observed at 970 cm-1 in the experi-
mental resonance Raman spectrum.8 It shifts down by 8 cm-1

and decreases in intensity when going from Rh-1U19 to Rh-
1HZX. The normal mode calculated at ca. 960 cm-1 in both
Rh-1HZX and Rh-1U19 is a coupled vibration of the C7dC8
Au HOOP and C7dC8 torsion. This HOOP mode was
detected experimentally at 976 cm-1.8 It seems that Rh-1HZX
provides slightly better correlation with the experimental data

Table 1. Selected Calculated Normal Mode Frequencies (cm-1) and Relative Intensities of the PSB11 Chromophore of
Rhodopsin Rh-1HZX and Rh-1U19 Modelsc

Rh-1HZX Rh-1U19 experiment

assignment freq I/I1556
a freq I/I1545

a freq I/I1548

CdN stretch 1640 0.004 1632 0.002 1655 0.069
in-phase CdC stretch 1556 1.000 1545 1.000 1548 1.000
C8-C9 stretch 1188 0.096 1198 0.023 1214 0.210
C12-C13 stretch 1184 0.075 1188 0.179 1238 0.250
C14-C15 stretch 1128 0.173 1132 0.074 1190 0.029
C10-C11 stretch 1058 0.004 1055 <0.001 1098 0.026
C11dC12 A2 HOOP - C11dC12 torsion 982 0.153 990 0.327 970 0.260
C7dC8 Au HOOP + C7dC8 torsion 960 0.033 958 0.044 976 b

C10H wag - C7dC8 Bg HOOP 857 0.074 847 0.066 882 <0.01
C7dC8 Bg HOOP + C10H wag 805 0.036 802 0.020 843 0.040

a Resonance Raman intensity of a mode relative to the intensity of the ethylenic stretching mode (1556 cm-1 in Rh-1HZX and 1545 cm-1

in Rh-1U19). Intensities were calculated using eq 5. b No detectable scaterring intensity in the observed spectrum (ref 8). c Comparison with
the experimental data from ref 8.
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concerning C11dC12 and C7dC8 HOOP frequencies. On
the other hand, a rather strong C11dC12 HOOP peak in
Rh-1U19 closely mirrors the observed intensity (Table 1).
There is yet another intense band in this region located at
essentially the same frequency (941 cm-1 in Rh-1U19 and
947 cm-1 in Rh-1HZX) and having the same intensity in both
models with large contributions from C14H and NH wag-
gings. It has no detectable intensity in the experimental
spectrum. Finally, two normal modes calculated at 847 and
802 cm-1 in Rh-1U19 (857 and 805 cm-1 in Rh-1HZX) have
been assigned to C10H wag in combination with the C7dC8
Bg HOOP mode. The former mode is characterized by
stronger, while the latter one by weaker C10H wag relative
amplitude (Table 1). Frequencies of C10H wag in both
models are only slightly affected by 10,11-13C substitution
(ca. 3 cm-1) but downshift dramatically upon C10-D substitu-
tion (ca. 125 cm-1) in line with experimental data.51

Conclusions

In this work we have investigated how the change in the
reference X-ray crystallographic structure including the
relocation of a protein pocket internal water molecule may
affect the vibrational properties of rhodopsin. Accordingly,
the resonance Raman spectra of Rh-1U19 and Rh-1HZX have
been simulated by performing CASSCF/Amber vibrational
frequency calculations supported by normal mode and
isotopic substitution analyses.

On the basis of high-level ab initio calculations we
managed to describe subtle changes in the vibrational
structure of rhodopsin chromophore. Specifically, a signifi-
cantly shorter counterion-Schiff base distance in Rh-1U19
relative to Rh-1HZX manifests itself in altered vibrational
frequencies and/or intensities of ethylenic, C-C bond
stretching, and HOOP modes as well as frequency shift
induced by N-deuteration of C)ND. Additionally, the down-
shifted ethylenic frequency of Rh-1U19 is consistent with a red-
shift of its absorption maximum in agreement with previous
studies on the electronic absorption spectra.6

A comparison of the most characteristic parts of the
resonance Raman spectra calculated for Rh-1HZX and Rh-
1U19 with their experimental counterparts8 reveals the
following:

(1) The RR intensity distribution of the ethylenic band in
both rhodopsin models is very similar to each other and quite
similar to the experimental one. Frequencies of the vibra-
tional modes in the CdC ethylenic band of Rh-1U19 are in
better agreement with the experimental values, e.g. the most
active CdC mode is calculated at 1545 cm-1 for the Rh-
1U19 model, which is only 3 cm-1 off the experimental
value, while this difference equals 8 cm-1 for Rh-1HZX.

(2) The location of the C-C vibrational modes in the
fingerprint region of Rh-1U19 more closely resembles the
pattern of the measured spectrum than does the simulated
spectrum based on the Rh-1HZX modelsthe frequencies of
the Rh-1U19 modes lie 4-10 cm-1 closer to their experi-
mental counterparts than Rh-1HZX modes with the exception
of the C10-C11 mode which reveals 3 cm-1 smaller gap
between theory and experiment in case of Rh-1HZX model.
Also, the RR intensities of C-C vibrational modes of Rh-

1U19 reveal closer agreement with the corresponding
experimental intensities.

(3) The C)NH mode and its deuterated form -C)ND
are calculated at frequencies that become sligthly closer (by
ca. 3 cm-1) to the corresponding measured values7 in case
of Rh-1HZX than Rh-1U19; however, the significantly lower
deuterium shift obtained for the former model (24 cm-1 in
Rh-1HZX vs 42 cm-1 in Rh-1U19) reflects the weakened
Schiff base hydrogen bonding in Rh-1HZX as compared to
the one in Rh-1U19.

(4) In the HOOP region observed in the 900 to 1050 cm-1

frequency range the relative intensity pattern of the 9-Me
rock and the most active C11dC12 HOOP mode is reversed
with respect to the experimental spectrum. DFT-based
simulation of this spectral region, which reveals correct
intensity distribution, points out to the importance of dynamic
correlation effects in quantitative reproduction of the HOOP
region of RR spectra of rhodopsin.50

Minor discrepancies between observed and calculated
intensities may originate from both shortcomings of the
approximate sum-overstates model, e.g. the assumption that
only FC-type scattering is important and/or the neglect of
the normal coordinate rotation and anharmonic effects as well
as from shortcomings of the QM/MM methodology, e.g.
reduced active space, lack of dynamic correlation energy,
truncated basis set, lack of force field polarizibility52 or
chosen ionization status of protein residues (e.g. for Glu181).

Overall, despite the limited level of theory employed to
calculate the RR spectra, our calculations do a fairly good
job in reproducing the major structural features of the
rhodopsin spectrum. In particular, the Rh-1U19 model of
rhodopsin seems to offer a slightly better agreement with
the experimental resonance Raman spectrum8 than Rh-1HZX
model does.
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Acc. 2007, 118, 185–191.

(7) Palings, I.; Pardoen, J. A.; Van der Berg, E.; Winkel, C.;
Lugtenburg, J.; Mathies, R. A. Biochemistry 1987, 26, 2544–
2556.

(8) Lin, S. W.; Groesbeek, M.; van der Hoef, I.; Verdegem, P.;
Lugtenburg, J.; Mathies, R. A. J. Phys. Chem. B 1998, 102,
2787–2806.

(9) Kochendoerfer, G. G.; Lin, S. W.; Sakmar, T. P.; Mathies,
R. A. Trends. Biochem. Sci. 1999, 24, 300–305.

(10) Kandori, H.; Schichida, Y.; Yoshisawa, T. Biochemistry
(Moscow) 2001, 66, 1197–1209.
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Abstract: Base flipping is a common strategy utilized by many enzymes to gain access to the
functional groups of nucleic acid bases in duplex DNA which are otherwise protected by the
DNA backbone and hydrogen bonding with their partner bases. Several X-ray crystallography
studies have revealed flipped conformations of nucleotides bound to enzymes. However, little
is known about the base-flipping process itself, even less about the role of the enzymes.
Computational studies have used umbrella sampling to elicit the free energy profile of the base-
flipping process using a pseudodihedral angle to represent the reaction coordinate. In this study,
we have used an unrestrained trajectory in which a flipped base spontaneously reinserted into
the helix in order to evaluate and improve the previously defined pseudodihedral angle. Our
modified pseudodihedral angles use a new atom selection to improve the numerical stability of
the restraints and also provide better correlation to the extent of flipping observed in simulations.
Furthermore, on the basis of the comparison of potential of mean force (PMF) generated using
different reaction coordinates, we observed that the shape of a flipping PMF profile is strongly
dependent on the definition of the reaction coordinate, even for the same data set.

1. Introduction

Base flipping (also known as base eversion) is a type of local
DNA motion in which a base group loses the hydrogen bonds
with its base pair partner and is everted from the intra-helical
to extra-helical position.1 Base flipping was first observed
in the DNA/methyltransferase complex X-ray crystal
structure.2,3 Studies have shown that base flipping is a
common strategy for enzymes to read and chemically modify
base groups which are otherwise protected by their base pair
partner, or their own sugar and phosphate groups.1 A variety
of these enzymes exist, such as methyltransferases, glyco-
sylases, and endonucleases. A number of crystal structures
with everted DNA base groups inside the active site of the
enzyme have been published.4-8 These structures reveal the
conformations of the everted base groups, but they provide

little insight into the conformational changes that occur
during the flipping process and, more importantly, the
possible transient role of enzyme functional groups in the
facilitation of base flipping. The rate of base flipping can be
measured experimentally by methods such as proton
exchange.9,10 However, studies have shown that this method
may overestimate the flipping rate since proton exchange
may occur in structures with limited solvent accessibility and
thus not require complete base flipping.11

Several computational approaches have been applied to
this subject.11-19 It is currently necessary to force eversion
using restraints in order to model the process during
computationally tractable simulations since uncatalyzed base
flipping occurs on the millisecond time scale.9 In one of the
earliest studies, Keepers et al. used a distance restraint
between the N1(pyrimidine) and N3(purine) to force the base
pair to break.20,21 However, the distance restraint cannot
specify which of the two bases to flip, or distinguish between
major or minor groove flipping pathways. Inspired by the
correlation between the base opening angle and the � dihedral
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angle seen in the crystal structure, Chen et al. applied restraint
forces on the � angle and glycosidic angles of the target
nucleotide to force base pair opening.22 This procedure
assumes that only two backbone dihedral angles of the
targeted nucleotide are responsible for base flipping, which
may not be generally true. It has been shown that using this
method can generate artificial conformations.12 More promis-
ing approaches have employed more sophisticated reaction
coordinates; these have been applied by Lavery and co-
workers using internal coordinates13-16 and MacKerell and
co-workers using a center of mass pseudodihedral angle11,17-19

(the latter is hereafter referred to as the CPD angle). The
results from these two approaches are in reasonable agree-
ment. Due to the nature of its definition using a standard
dihedral angle with points defined by center of mass groups,
MacKerell’s pseudodihedral angle method is relatively easier
to implement in current molecular dynamics simulation
algorithms. An excellent recent application of this method
to cytosine 5-methyltransferase from HhaI suggests that the
enzyme shifts the equilibrium to the flipped state by
destabilizing the DNA duplex and stabilizing the everted
conformation.17

In the present study, we first tested the CPD definition to
study base flipping using the Amber simulation package and
then improved the CPD definition.23 Our results show that
MacKerell’s highly valuable CPD definition can have several
potential disadvantages in spite of its multiple strengths.
Using the traditional CPD definition, we find that there are
large energy fluctuations and occasional simulation instability
when the base is everted. Another disadvantage is that there
is not a unique mapping between the CPD angle and the
extent of eversion; we observed that significantly different
structures can have comparable CPD angles when using the
previous definition. On the basis of our molecular dynamics
(MD) simulations of spontaneous base pair formation in
unrestrained simulation, we identified several reasons for the
weaknesses described above. We thus modified the CPD
definition to employ two separate definitions of different
groups of atoms to define the pseudodihedral angle (hereafter
referred to as CPDa and CPDb); we find that these better
represent base flipping. Simulations using the CPDa/b
reaction coordinates were able to give a more reliable re-
presentation of the base-flipping pathway with improved
correlation between the reaction coordinate and the extent
of eversion, along with improved simulation stability. The
two new CPDa/b angles were applied to calculate the free
energy profile of base flipping for guanine in a DNA duplex.
The free energy barrier of the base flipping is comparable
with that of previous studies. The relationship between the
specific definition of the reaction coordinate and the overall
shape of the resulting free energy profile is discussed.

2. Methods

2.1. System Preparation. The initial structure was stan-
dard B-form duplex DNA built using the NUCGEN program
in the Amber simulation package.23 The DNA sequence used
is shown in Table 1 below. The targeted central base pair
for flipping was C10:G24, and G24 was the base group
(hereafter referred to as the target base group) for base
flipping.

The initial coordinate and parameter files were created
using the LEAP module of Amber on the basis of the
structure generated by NUCGEN, solvated in truncated
octahedron boxes with a minimum 8 Å buffer between the
box edge and the nearest solute atom. The TIP3P water
model24 was used to explicitly represent water molecules.
The DNA parameters employed ff99,25,26 with the parmB-
SC0 modified R/γ torsional terms.27 These coordinates were
used for all simulations.

2.2. Molecular Dynamics Simulations. All molecular
dynamics simulations were carried out with the SANDER
module in Amber.23 Following the procedure used in
previous studies,28,29 the solvated systems were minimized
and equilibrated in three steps: (i) 50 ps MD simulation30

with DNA atoms constrained and movement allowed only
for water; (ii) five 1000-step cycles of minimization, in which
the positional restraints on the DNA were gradually de-
creased; (iii) four cycles of 5000-step MD simulation with
decreasing restraints on the DNA. A final 500 ps of MD
was performed without restraints. The resulting structures
were used in umbrella sampling simulations.

SHAKE31 was used to constrain bonds involving hydrogen
atoms. The nonbonded cutoff was 8 Å. The particle mesh
Ewald method32,33 was used to calculate long-range elec-
trostatics. Constant pressure (1 atm) and temperature (330
K, slightly elevated to improve sampling) were maintained
by the weak coupling algorithm with a coupling constant of
1 ps.34 A 0.002 ps time step was used.

2.3. Structural Analysis. To obtain unbiased structural
analyses on the three types of reaction coordinates presented
in this work, we generated an unrestrained MD simulation
starting from a structure containing an everted target base,
which then spontaneously reinserted into the duplex during
the simulation. In this simulation, the same sequence of DNA
duplex and the simulation conditions described in the
previous sections were used. The root-mean-square deviation
(rmsd) of all heavy atoms in the central three base pairs was
calculated, with the reference structure of a standard B-form
duplex DNA. The glycosidic angle of the G24 nucleotide
wasalsomeasured,usingthedihedralangleO4′-C1′-N9-C4.
The distance between the central base pair units is repre-
sented by the distance between N1 of G24 and N3 of C10.

Table 1. Sequence of the Duplex DNA Used in Our Simulationsa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5′ A
G G T A G A T C C G G A C G C
C C A T C T A G G C C T G C G T 5′
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

a The base pair C10:G24 is the targeted central base pair, and G24 is the target base for flipping.
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2.4. The Definition of the Base-Opening Dihedral
Angle. Umbrella sampling35-38 was used to calculate the
potential of mean force (PMF) as a function of our new
center of mass pseudodihedral angles CPDa/b. The defini-
tions of two proposed variations on this new flipping metric,
CPDa and CPDb, are shown in Figure 1. The Sander module
of Amber9 was modified to support these restraints. The four
points for each dihedral form two triangular planes which
share one side defined between P2 and P3. The base opening
angle is defined by the angle between these two planes.
Changes from the definition of MacKerell at al. involve the
use of both flanking base pairs for the P1 center of mass (as
opposed to only one flanking pair) and using either the sugars
or phosphates flanking the flipping base as points P2 and
P3. Point P4 was defined using only the five-member ring
of the purine in order to remove the influence of glycosidic
rotation on the flipping angle, which occurs if the entire
purine base is included in COM point P4 (data not shown).

2.5. Umbrella Sampling and Potential of Mean
Force Calculations. The procedure for umbrella sampling
was adapted from previous studies.11 Starting from the
standard B-form conformation, the initial structure of each
window was generated by a 0.5 ps simulation with a restraint

force constant of 10 000 kcal/(mol × radian2) in a serial
fashion, which used the previous window’s last structure as
the starting structure of the current window. Each window
was separated by 5° from the flanking windows. After the
initial structures were generated, 500 ps simulations using
the same definition of restraint and a 1000 kcal/(mol ×
radian2) restraint constant were carried out for the sampling.
The eversion angle and energy data were recorded at each
time step. The other parameters of these simulations were
the same as those of the standard MD simulations. The
resulting PMF was obtained by a WHAM analysis36-38 of
the data using a program provided by Alan Grossfield (freely
available at http://dasher.wustl.edu/alan).

3. Results and Discussion

3.1. Simulation of Spontaneous Base Pair Formation.
Umbrella sampling simulations provide the PMF along the
chosen reaction coordinates for a system. To generate an
accurate free energy profile along a conformational change
of interest, the reaction coordinate should be able to represent
conformational change faithfully. To evaluate the extent to
which various reaction coordinates can represent the process

Figure 1. Definitions of various reaction coordinates for base eversion. (A) CPD: MacKerell et al.’s original COM pseudodihedral
angle definition. (B) CPDa: the modified COM pseudodihedral (CPD) angle definition, in which p1 is defined by the mass center
of the two flanking base pairs, p2 and p3 are defined by the flanking sugar groups, and p4 is defined by the five-member ring
of the flipping purine (or the entire six-membered ring for a flipping pyrimidine). (C) CPDb: a similar definition to that of CDPa,
but using the phosphate groups for p2 and p3. The dotted lines show the two planes which define the pseudodihedral angles.
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of a base-flipping event, we generated an unrestrained
trajectory for a duplex in explicit water where a base pair
spontaneously formed from the everted position, since it is
a faster event than base opening. The starting structure was
obtained from an umbrella sampling simulation using the
CPD definition at -140°. A 10-ns unrestrained MD simula-
tion was carried out. From the original everted position, the
guanine spontaneously returned to the duplex and reformed
the Watson-Crick base pair with the cytosine in less than 5
ns. Several snapshots taken from the trajectory are shown
in Figure 2. In the starting structure (0 ps), the everted base
(G24) is completely outside of the duplex. At ∼1 ns, it
moved closer to the major groove, and the purine ring
adopted a conformation nearly perpendicular to the other,
stacked base groups. This conformation was stable until ∼3
ns, during which the purine ring attempted to reinsert into
the duplex but was unsuccessful since the G24 was still in
the syn conformation. It returned back to its previous everted
position at ∼4 ns, adopted an anti conformation at ∼4.2 ns,
and then successfully reinserted into the duplex at ∼4.3 ns.
The newly formed base pair was stable for the remainder of
the 10 ns simulation (only 5 ns is shown in Figure 2).

The observation of spontaneous base pair formation
provides an excellent data set for evaluation of the various
parameters in the base eversion restraints that will be used
for umbrella sampling. In particular, any measure of base
flipping should reproduce the observation that the first
attempt at reinsertion by the base was unsuccessful, after
which it moved back out of the major groove and then
successfully inserted. We calculated several properties of the

DNA duplex along this trajectory, such as the distance
between the forming base pair (represented by the distance
between N1 of G24 and N3 of C10), the glycosidic angle of
the flipped G24 base, and the rmsd value of the central three
base pairs relative to the standard B-form DNA. The results
are shown in Figure 3.

At the beginning of the simulation, the distance between
the central two bases was ∼15 Å. The flipped base G24 was
in a syn conformation, with the glycosidic angle at ∼55°.
The rmsd value of the central three base pairs was ∼5 Å
compared to standard B-form DNA. The distance decreased
to about 3 Å at ∼4.3 ns ps; further analysis confirmed that
this was accompanied by the formation of all three
Watson-Crick hydrogen bonds. The reformed hydrogen
bonds were stable for the rest of the simulation. Also at 4.3
ns, the glycosidic angle changed to ∼ -90°, falling within
the anti range, and the rmsd value decreased to ∼1.5 Å,
indicating that the structure was highly similar to canonical
B-form DNA.

3.2. Evaluation of Alternate Base Flipping Reaction
Coordinates. The unrestrained MD trajectory exhibited a
pathway of spontaneous base pair reforming, which provides
an excellent data set for evaluation of the CPD reaction
coordinate using COM groups as defined by MacKerell et
al. and comparison to the modified approach with different
selections for the COM groups (Figure 1). CPD denotes the
base opening angle calculated using MacKerell’s et al.’s
center of mass pseudodihedral angle (Figure 1A). CPDa and
CPDb are the new center of mass pseudodihedral angles
(Figure 1B,C). During the analysis, we have found that, in
the original CPD definition, the center of mass of the flipped
base and the next two centers of mass can become collinear
(Figure 4, structure image shown in Figure S1, Supporting
Information). Therefore, we have also measured angles
defined by these three neighboring COM positions for each
CPD definition using the angle defined by points 2-3-4

Figure 2. Snapshots taken from the base pair reforming
trajectory viewed from the major groove. For clarity, water,
hydrogen atoms, and DNA outside the central three base pairs
are not shown. The simulated structures are colored by atom
type. The structure in gray indicates the same duplex in a
standard B-form conformation for reference. The time se-
quence is described in the text.

Figure 3. Data from the unrestrained trajectory with spon-
taneous base pair formation. The upper panel shows the
heavy-atom-to-heavy-atom hydrogen-bonding distance be-
tween atom N1 of residue G24 and atom N3 of residue C10
between the bases in the new base pair. The middle panel
shows the glycosidic angle of the flipped G24 nucleotide. The
lower panel shows the rmsd of all atoms in the central three
base pairs as compared to standard B-form DNA.

3108 J. Chem. Theory Comput., Vol. 5, No. 11, 2009 Song et al.



shown in Figure 1a. Instability in the dihedral calculation
should be expected if this angle approaches 0° or 180°.

From Figure 4, we can see that there are several potential
disadvantages using the COM groups as originally defined
by the original CPD angle. The first disadvantage is that the
reaction coordinate does not have a one-to-one correlation
between the measured and actual extent of eversion. For
example, CPD-dihedral angle values sampled for everted
conformations (between 2100 and 3100 ps) are comparable
to those sampled after the base pair has formed at 4300 ps.
This means two different points on the base everting pathway
will have the same value of the reaction coordinate. This is
caused by the definition of the CPD angle; the last three
points in the CPD definition (P2, P3, and P4, see Figure 1a)
can become collinear in everted conformations, resulting in
numerical instability. According to the original CPD defini-
tion, negative values denote flipping along a major groove
pathway, and positive values indicate the minor groove
pathway. While the sign of a particular flipping direction
(major/minor) is arbitrary and depends on whether the CPD
is defined from the 3′ or 5′ side of the flipping base, the
data should be consistent once a definition of CPD is chosen.
However, although the trajectory was visually confirmed to
sample only the major groove pathway, the CPD during the

simulation adopted both negative and positive values, sug-
gesting that the sign is not a reliable indicator of the flipping
directions.

By using the new definitions (CPDa and CPDb in Figure
4), the reaction coordinate values and the position of the base
group have an improved correlation. The CPDa and CPDb
angles gradually reduced from ∼180° (extrahelical) at the
beginning of the simulation to 50° at 2300 ps. The flipped
base was close to its intrahelical position at 2300 ps, except
that the base was in its syn conformation, not in the anti
conformation required for proper Watson-Crick pairing (see
the chi24 in Figure 3). Steric hindrance with the phosphodi-
ester backbone prevents rotation about the glycosidic bond
in this position; thus, the base once again moved out of the
major groove, with the CPDa and CPDb correctly reflecting
this change, with values increasing between 3600 and 4200
ps. The extra-helical base then rotated to an anti conformation
and subsequently reinserted, restoring the Watson-Crick
pair. This is represented with the low (∼0) and steady values
of the CPDa and CPDb flipping angles in Figure 4; we note
that with the CPDa and CPDb definitions the intrahelical
values (near 0) were not seen for any of the everted
conformations. This is in contrast to the “intrahelical” CPD
values observed at multiple points prior to the actual
reinsertion event.

The second disadvantage of the original pseudodihedral
definition is that one of the two angles (CA in Figure 4)
connecting the four centers of mass can adopt values close
to 0° or 180° when the base is extrahelical. From Figure 4,
we can see that angle CA is very close to 180° before the
base pair is reformed at about 4000 ps (the distance in panel
1 of Figure 4 can be used as an indicator of the base pair
reforming). After the base pair formed (the distance becomes
a steady line at about 3 Å), the CA angle adopted values
near 90°. The dihedral angles are defined by four points,
where each set of three consecutive points defines a plane.
The dihedral angle is the angle between these two planes.
When the last three consecutive points are close to being
linear (0° or 180°), a slight change of the position of the
fourth point can greatly change the definition of the second
plane, which results in large fluctuations in the dihedral angle
(the second panel in Figure 4) and resulting forces. This
caused unpredictable instabilities in simulations with everted
bases (data not shown); CPD dihedral angle differences of
∼40° were observed for nearly identical structures sampled
during short time spans (Figure S1, Supporting Information).
In the new definitions, both angles (PA and SA in Figure 4)
had values well away from 0° and 180° during the entire
profile, resulting in improved numerical stability of the
dihedral angle.

The third disadvantage of the old definition is less explicit.
The definition of CPD is not symmetric (Figure 1), and the
choice of P1 and P2 dihedral points as being either the 3′ or
5′ side of the flipping base is arbitrary. Due to the asymmetric
structure of the DNA duplex, a free energy profile calculated
using the two points from the 3′ side differs from that
obtained with restraints for the dihedral points defined on
the 5′ side. By using the new definition, the 5′ and 3′ sides

Figure 4. The evaluation of the reaction coordinates defined
by MacKerell et al. and the new definitions. The first panel is
the distance between the two bases in the base pair being
formed, which is the heavy-atom-to-heavy-atom hydrogen-
bonding distance between residue G24 atom N1 and residue
C10 atom N3. The pseudodihedral angles are defined as the
angles between two planes (see Figure 1). CPD is the original
dihedral reaction coordinate. CPDa is the pseudodihedral
angle using sugar groups. CPDb is the angle using phosphate
groups. Angles between points 2, 3, and 4 for CPD, CPDa,
and CPDb are shown as CA, SA (sugar angle), and PA
(phosphate angle), respectively. Instability in the dihedral
results when these angles adopt values very near 0° or 180°.
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are both included in a single calculation, with the resulting
PMF being less ambiguous.

3.3. The Free Energy Profiles Calculated Using the
New Definitions. The free energy profiles for base eversion
using our two new CPDa/b dihedral angle definitions in
umbrella sampling have been calculated (Figure 5). The
upper panel shows the PMF profile using the centers of mass
of the deoxyribose rings groups as dihedral points P2 and
P3 (CPDa, Figure 1b). The lower panel shows the results
using the phosphates as P2 and P3 (CPDb, Figure 1c). To
estimate the convergence of the calculation, we also calcu-
lated the free energy profile using the second half of the data
and generated error bars using the difference between the
two results.

From Figure 5, we can see that there are certain similarities
and differences between the two energy profiles. Both profiles
can be divided into two regions: the “basin” and the “plateau”
regions. The basin region is near the energy minimum and
has a lower free energy and steeper slope. The plateau region
reflects everted bases and is further from the minimum with
a high free energy value and less energetic dependence on
the angle. The basin region for the profile using the phosphate
groups (CPDb) was between -45° and +45°. The basin
using the sugar group for the PMF reaction coordinate
(CPDa) is significantly broader, ranging from -120° to
+120°. In both cases, the barriers of the PMFs (after the
basin region ends) at the major groove pathway were lower

than those at the minor groove pathway. The values for using
the sugar rings were about 13 kcal/mol for the major groove
and 18 kcal/mol for the minor groove. The values for using
phosphate groups were about 12 kcal/mol for the major
groove and 15 kcal/mol for the minor groove. These results
agree reasonably with calculations by Banavali and MacK-
erell, showing that the energy barriers for G flipping are 18.7
and 21.3 kcal/mol for the major and minor groove, respec-
tively.11 The positions of the minima and height of the energy
barriers of Benavali and MacKerell’s and our studies are
similar but do not exactly match. One possible reason is that
the sequence contexts are different between these two studies.
However, both experimental and theoretical studies have
suggested that base opening rates have little dependence on
sequence context.9,39 The differences may also be due to the
influence of the reaction coordinate definition on the PMF
details, or the enforcement of periodicity in the free energy
calculation, or the difference between CHARMm and Amber
force fields. The present results are also comparable to the
Amber results of Priyakumar and MacKerell,12 though that
study used an older version of the Amber DNA force field
than used here.

Although the free energy barriers were similar in the two
free energy profiles in Figure 5, the widths of the basin
regions were significantly different. The basin is much wider
for the CPDa definition. To understand why the free energy
profiles are different, we calculated the correlations between
CPDa and CPDb definitions for structures sampled in the
two umbrella sampling runs, which are shown in Figure 6.
Data from both simulations have a high correlation between

Figure 5. Free energy profiles using the two new pseudodi-
hedral eversion definitions. The x axis is the pseudodihedral
angle. Panel A shows the result using the center of mass of
the sugar rings as points P2 and P3 (CPDa). Panel B shows
the result using the center of mass of the phosphates as
dihedral points P2 and P3 (CPDb). Positive/negative values
reflect flipping into major/minor grooves, respectively. The
solid line shows the free energy profile calculated using the
last 400 ps of a total 500 ps per window. The error bar shows
the difference of the results calculated using the last 400 ps
data and the last 200 ps data.

Figure 6. The correlation of the two CPDa/b definitions. Panel
A shows the structures sampled using the CPDa restraint.
Panel B shows the structures sampled using the CPDb
restraint. The x axis shows the postprocessing results using
CPDa, while data for CPDb are are on the y axis. Regardless
of the restraint used to generate the structures, CPDa is more
sensitive than CPDb to changes in the region near 0°.
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CPDa and CPDb values. However, both correlation figures
are not straight lines. There is a flat phase near 0°, which
corresponds to the intrahelical conformation of the base. In
other words, the intrahelical space is wider using CPDa as
reaction coordinates than using CPDb, even for the same
structure sets. This is due to the difference in the geometry
of the two definitions in the intrahelical region. In Figure 4,
we can see that CPDa is has obtuse angle SA, and the PA
of CPDb is ∼60° when the base is in its intrahelical
conformation. Since it corresponds to the intrahelical con-
formation, the basin region is wider in CPDa space.

We further analyzed the correlation between flipping angle
and base pair distance to investigate the properties of these
two reaction coordinate definitions (Figure 7). Figure 7a
shows the structures sampled in the umbrella sampling
simulation using the CPDa restraints. Figure 7b shows the
structure sampled in the umbrella sampling simulation using
CPDb restraints. For all structures in each simulation, we
calculated the distance between the flipping base and its
partner, as well as flipping angles measured using both
dihedral definitions. As we observed with the comparison
of the two dihedral angles in Figure 6, data from simulations
performed with either definition as the restraint are consistent.
In both cases, the base pair distance was about 3 Å and stable
for the region around a base opening angle of 0°. In both
simulations, the region of close contact between the bases
covers a significantly larger range when using CPDa as a

reaction coordinate than when using CPDb as a reaction
coordinate, even when they were applied to the same set of
structures. This confirms that CPDb is more sensitive to the
true extent of base opening. We can also see that the
structures sampled using CPDb (Figure 7b) are more similar
among windows than the ones sampled using CPDa (Figure
7A). The structures sampled using CPDa (Figure 7a) seem
more poorly converged. The reason CPDa and CPDb behave
differently may be due to the number of internal coordinates
encompassed in the two definitions. CPDb includes two
phosphate groups and one sugar ring between P2 and P3,
while CPDa includes two phosphate groups and three sugar
rings (see Figure 1). Since the CPDa definition has a more
complex conformation space, it is more sensitive to structural
fluctuations in the backbone.

4. Conclusion

Base flipping is an important event, and computational tools
have been shown to be essential in studying processes such as
an enzymatic role in flipping. Starting from a flipped conforma-
tion, we have generated a fully unrestrained MD trajectory in
which an everted guanine base spontaneously returned to its
intrahelical conformation and reformed its Watson-Crick pair
with the cytosine partner. This trajectory was used to evaluate
a previously proposed pseudodihedral angle and how well it
describes the extent of eversion. We found several disadvantages
in the definition, including the potential for numerical instability,
and used the data to propose two modified pseudodihedral
definitions which can successfully avoid the observed disad-
vantages. The free energy profiles of the base flipping using
the new definitions have been calculated, and the results
reasonably agree with previously published results. We also
compared the two modified definitions. The one using the center
of mass of the phosphate groups has a tighter correlation with
the base opening angle; therefore, it is a better representation
for base flipping. The reaction coordinate using the center of
mass of the sugar groups has a larger conformation space and
appeared to be more difficult to use in generating well-
converged data. In closing, we remind the reader that using any
restraint to impose a reaction coordinate may introduce artifacts
in the data as compared to fully unrestrained systems.

Supporting Information Available: Figures of struc-
tures with everted base and sample input file listing atoms in
COM restraint groups for CPD definitions. This material is
available free of charge via the Internet at http://pubs.acs.org.
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Abstract: We present a general boundary potential for the efficient and accurate evaluation of
electrostatic interactions in hybrid quantum mechanical/molecular mechanical (QM/MM) ap-
proaches called solvated macromolecule boundary potential (SMBP), which is designed for QM/
MM calculations with any kind of QM method. The SMBP targets QM/MM single-point energy
calculations and geometry optimizations. In the SMBP scheme, the outer solvent and
macromolecule region is described by a boundary potential obtained with the use of
Poisson-Boltzmann calculations (treating the bulk solvent as a dielectric continuum). In the
QM calculations, the SMBP is represented by virtual point charges on a surface enclosing the
explicitly treated inner region. These charges and their interactions with the QM density are
determined through a self-consistent reaction field procedure. The accuracy of the SMBP is
evaluated on three diverse test systems: the intramolecular proton transfer of glycine in water,
the hydroxylation reaction in p-hydroxybenzoate hydroxylase, and the spin state energy splittings
in the pentacoordinated ferric complex of cytochrome P450cam. In the case of solvated glycine,
application of the SMBP turns out to be problematic since analogous QM/MM/SMBP and full
QM/MM geometry optimizations lead to different close-lying local minima. In both enzymes, the
SMBP performs very well and closely reproduces the results from full QM/MM optimizations of
these more rigid test systems. Starting from optimized QM/MM/SMBP structures along a reaction
path, one can apply the previously implemented generalized solvent boundary potential (GSBP)
to sample over MM phase space in QM/MM free energy calculations within the framework of
free energy perturbation theory. This reduces the overall computational costs of sampling by 1
order of magnitude while maintaining good accuracy. The combined use of SMBP and GSBP
thus allows for efficient QM/MM free energy studies of enzymes.

1. Introduction

Hybrid quantum mechanical/molecular mechanical (QM/MM)
methods have become established tools for studying large
biomolecules, with an increasing number of applications being
devoted to the computation of free energy differences.1-12 In
these systems, long-range electrostatic interactions can have a
significant influence on the stability of transition states or the
relative energies of different configurations. Therefore, an
accurate description of these interactions is indispensable for
meaningful computations of properties that require extensive

configurational sampling, for example, free activation or reaction
energies.13-16 While the development of efficient and accurate
methods to describe electrostatic interactions improved the
reliability of classical molecular dynamics (MD) simulations
significantly,14 these methods have only recently been adapted
to the QM/MM framework.17-21

In the context of biomolecular simulations, one is fre-
quently interested in localized processes in small active
regions. The surrounding outer region often only serves to
exclude solvent molecules, to constrain the active site
geometries, and to provide a suitable electrostatic potential
that supports a catalytic reaction, for example, by stabilization* Corresponding author e-mail: thiel@mpi-muelheim.mpg.de.
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of the transition state. For this class of systems, boundary
potentials are suitable for treating long-range electrostatic
interactions.22-33 In this approach, the biomolecular system
is subdivided into an inner region, comprising the active site
and the adjacent part of the enzyme, and an outer region,
comprising the rest of the enzyme and the outer solvent
molecules. A perfect boundary potential describes the entire
effect of the outer region such that the statistical properties
of the inner region interacting with the boundary potential
are identical to those of the full solvated biomolecule.
Consequently, the boundary potential may be constructed
rigorously by integration over all degrees of freedom of the
outer region.33 An efficient implementation, however, neces-
sitates the introduction of further approximations.

The generalized solvent boundary potential (GSBP) de-
veloped by Im et al. in 2001 is a notably attractive and
successful boundary potential.34 In this approach, the outer
region solvent molecules are represented by a polarizable
dielectric continuum (PDC) and the outer region charge
distribution by fixed point charges. Electrostatic interactions
with the outer region are separated into a static solvent-
shielded field induced by the outer region point charges
interacting with the dielectric, and a dynamic reaction field
that is induced by interaction of the inner region charge
distribution with the dielectric. A great advantage of the
GSBP is the possibility to handle irregularly shaped dielectric
boundaries. The GSBP was first applied successfully in
classical simulations.34,35 It was later adapted for use in
combination with a hybrid QM/MM Hamiltonian,20 with the
self-consistent-charge density-functional tight-binding (SCC-
DFTB) method36 as the QM component. The resulting SCC-
DFTB/MM/GSBP approach proved to be efficient and
accurate and was applied in several studies of biological
systems.37-40 It was only found to be problematic in one
case where the macromolecule underwent major conforma-
tional changes.41 Since the fixation of the outer region is
the fundamental assumption that allows for a closed-form
expression for the electrostatics, the GSBP is not adequate
to study nonlocal processes. Recently, the GSBP was
implemented for NDDO-based semiempirical QM/MM
Hamiltonians, and an evaluation showed that the GSBP
allows accurate semiempirical QM/MM MD simulations at
significantly reduced computational costs compared to
standard QM/MM methods.21

Although semiempirical QM/MM MD simulations enable
sufficient sampling of phase space, they suffer from the
inaccuracies of the semiempirical QM Hamiltonian. As QM/
MM MD simulations with accurate density functional or ab
initio methods are prohibitively expensive, several schemes
have been devised to approximate free energy differences
on the basis of first-principles quantum mechanics.1,8,42-50

The QM/MM free energy perturbation (FEP) method51 is
one of these approaches. It is based on three assumptions:
(1) the dynamics of the QM and MM subsystems are
independent; (2) the entropy change in the QM region can
be estimated from the harmonic approximation, and (3)
commonly, the electrostatic QM/MM interactions are ap-
proximated by interactions between QM and MM point
charges, with the QM charges fitted to the electrostatic

potential (ESP).2 These approximations reduce the compu-
tational costs significantly such that computation of free
energy differences is possible with accurate QM/MM
methods. The validity of this approach is supported by
successful applications3,52-54 and comparisons to nonap-
proximated free energy methods.7,10

In this article, we present a general boundary potential
for QM/MM calculations that offers two new possibilities.
First, it extends the QM/MM method to a general three-layer
approach that describes the outer solvent and macromolecule
region by a boundary potential and thus allows for an
accurate description of long-range electrostatic interactions
and bulk solvent effects. Second, within the FEP framework,
it allows application of the GSBP to sample the MM phase
space more efficiently. Both options are available in com-
bination with every QM/MM potential. Since this boundary
potential mimics the electrostatic potential of the outer region
of macromolecules in solution, we denote it the solvated
macromolecule boundary potential (SMBP).

2. Methods

This section begins with a definition of the different regions
into which the full system is separated using a boundary
potential approach. Then, the theory of the GSBP is briefly
reviewed, and the new SMBP for QM/MM calculations is
introduced. Finally, we show how the combined use of the
SMBP and GSBP allows efficient ab initio QM/MM free
energy calculations within the FEP framework.

2.1. Separation of Regions. The foundation of any
boundary potential approach is the separation of the full
system into an inner and outer region. This partitioning is
illustrated in Figure 1. All atoms in the inner region (colored
atomistic representation) are simulated explicitly, while
the influence of the outer region (shown in gray ribbons)
on the inner region is mimicked by the boundary potential.

Figure 1. Illustration of the boundary potential approach. The
explicit inner region is represented atomistically. The implicit
outer macromolecule region is depicted by gray ribbons, and
the implicit solvent region is represented by the blue area.
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The atoms in both regions interact with the dielectric
continuum that represents the bulk solvent (blue area).

Considering a macromolecule R surrounded by N solvent
molecules in a boundary potential approach, the inner region
comprises the inner part of the macromolecule (Ri) and the
n inner solvent molecules, while the outer N - n solvent
molecules and the outer part of the macromolecule (Ro)
belong to the outer region. Statistical expectation values
depending only on the degrees of freedom of the inner region
can be computed on the surface of the potential of mean
force (PMF) W(Ri, 1, ..., n).

The PMF is obtained by integrating out the degrees of
freedom of the outer region, including only those configura-
tions with all outer region atoms outside the inner region
(as indicated by the primed integral). Beglov and Roux
demonstrated that the PMF is related to the reversible
thermodynamic work necessary to assemble the inner region
if the integration constant C is chosen accordingly.33 This
allows separation of the PMF into contributions that arise
from configurational restrictions (∆Wcr), nonpolar interactions
(∆Wnp), electrostatic interactions (∆Welec), and the potential
energy of the isolated inner region (U).

Although the accuracy of the GSBP and the SMBP
decreases in the immediate vicinity of the boundary, it is
important to ensure that the inner region preserves its shape.
Therefore, it is necessary to fix the outer layer of the inner
region.21 As a consequence, the inner region is further
subdivided into an active explicit and a frozen explicit region.

2.2. Generalized Solvent Boundary Potential. The ob-
jective of the GSBP is to provide an efficient and accurate
approximation of the electrostatic contribution to the PMF.
Hence, the outer solvent molecules are described by a PDC
and the outer macromolecule region by fixed point charges.
In this case, the electrostatic contributions to the PMF consist
of direct Coulombic interactions of the inner and outer
regions (Uelec

io ), and the solvation free energy resulting from
interaction with the PDC (∆Welec

solv). This term stems from the
interaction of the charge distribution of the entire macro-
molecule, represented by point charges qA, with the reaction
field potential φrf(r).

The reaction field potential is the difference of the
electrostatic potentials in solution and in vacuum that are
computed by solving the linearized PB equation.55

Here, F(r) is the charge density, ε(r) is the space-dependent
dielectric constant, and κj(r) is the modified Debye-Hückel

screening factor. Direct computation of this term during
sampling is prohibitively expensive since it would require
solving the PB equation for each configuration. To isolate
the dynamic contributions, the charge distribution is separated
into an inner and outer part, and as a consequence ∆Welec

solv

splits up into outer-outer, inner-outer, and inner-inner
contributions.

The interaction of the outer region charge distribution with
the self-induced reaction field (∆Welec

oo ) is constant throughout
sampling and can therefore be neglected. Calculation of the
direct Coulombic interactions of the inner and outer regions
and the inner-outer contribution to the solvation free energy
can be combined efficiently.

Since the outer region is constant, the electrostatic potential
of the outer region in solution, φs

o, is constant for all inner
region configurations, and therefore, this ansatz offers a
massive reduction of computational cost. The inner-inner
contributions, however, remain problematic since the inner
reaction field potential depends on the inner region config-
uration. To find an analytical expression for this term, a
Green’s function approach is used to express the inner
reaction field potential.

Now, the inner charge distribution and the reaction field
Green’s function are projected onto the same set of basis
functions {bn}, and the solvation energy of the inner region
can be expressed as a matrix product of the reaction field
matrix, Mrf, and the generalized multipole moments of the
inner charge distribution, Qn. This leads to the final expres-
sion for the electrostatic contribution to the PMF.

Although this ansatz circumvents repeated solution of the
PB equation during sampling, it is important to point out
that computation of the reaction field matrix necessitates
solving the PB equation a few hundred times before the
simulation. Therefore, use of the GSBP is connected with a
significant overhead.21

In the QM/MM approach, the inner region is subdivided
into a QM and a MM region, and concomitantly, the inner
region charge distribution splits up into QM and MM charge
distributions that interact separately with the static outer
region potential, φs

o, and the reaction field Green’s function,
Grf.

e-�W(Ri,1,...,n) ) 1
C ∫′

dRo d(n + 1) · · · dNe-�U(R,1,...,N)

(1)

W(Ri, 1, ..., n) ) U(Ri, 1, ..., n) + ∆Wcr +
∆Wnp(Ri, 1, ..., n) + ∆Welec(Ri, 1, ..., n)

(2)

∆Welec
solv ) 1

2 ∑
A

qA φrf(rA) (3)

∇[ε(r) ∇φ(r)] - κ
2(r) φ(r) ) -4πF(r) (4)

∆Welec
solv ) ∆Welec

oo + ∆Welec
io + ∆Welec

ii (5)

∆Welec
io + Uelec

io ) ∑
A∈inner

qA φrf
o (rA) + Uelec

io

) ∑
A∈inner

qAφs
o(rA)

(6)

φrf
i (r) ) ∫ dr′ Fi(r

′) Grf(r, r′) (7)

∆Welec
GSBP ) ∑

A∈inner

qAφs
o(rA) + 1

2 ∑
mn

QmMmnQn (8)
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The charge-shift scheme is employed to avoid overpolar-
ization of the QM electron density, by distributing the charges
of MM atoms at the QM/MM boundary over the neighboring
MM atoms and correcting for the resulting change in the
dipole moment.56 Therefore, the QM multipole moments
(Qm

QM) interact with the multipole moments of the charge-
shifted MM charge distribution (Qn

MM, cs) via the reaction field
matrix (Mmn).

The main issue of any QM/MM implementation of the
GSBP is the representation of the continuous QM charge
density, FQM(r). In previous implementations,20,21 the QM
density was represented by Mulliken charges.57

This choice has the two advantages that the working
equations of the GSBP for MM methods can be easily
extended to the QM/MM case and that the interaction of the
QM density with the boundary potential during the self-
consistent field (SCF) procedure can be expressed in simple
terms that have to be added to the Fock matrix. However,
there are also two disadvantages. First, the GSBP has to be
implemented for each QM program and method individually.
Second, to compute accurate analytical gradients, it is
necessary to calculate the derivative of the Mulliken charges,
which involves solution of the coupled-perturbed SCF
(CPSCF) equations. While the computational costs of this
step are acceptable for semiempirical methods, they will
increase significantly for higher-level QM methods with
larger atomic orbital basis sets.21

2.3. Solvated Macromolecule Boundary Potential. The
design of the SMBP was guided by the requirements that it
should be conceptually similar to the GSBP, efficient in
geometry optimizations, and applicable in QM/MM calcula-
tions with any kind of QM method.

We first consider the definition of the dielectric boundary:
The core of the GSBP is the analytical expression for the
electrostatic interaction with the outer region charge distribu-
tion that is shielded in a nontrivial way by the PDC. To find
a closed-form expression for this potential, it is necessary
to assume that the dielectric interface is fixed during the
simulation.34 Usually, in solutions of the PB equation, the
interface is defined by the superposition of the van der Waals
(vdW) envelope of the atoms. In the GSBP, a constant and
smooth dielectric interface throughout dynamics simulations
is ensured by extending the dielectric cavity region that
encloses the inner region. For the sake of consistency, the
same approach is used in the SMBP. The inner region is
restricted to have a spherical shape with radius Rinner that
comprises all inner region atoms. Since all atoms inside the
sphere are modeled explicitly, the dielectric constant inside

the inner region is set to 1. In the bulk solvent and the
macromolecule region, the dielectric constant is set to εs and
εm, respectively. To secure that the shape of the interface is
independent of the position of the active atoms, the radius
of the inner region cavity is extended by ∆R. This value has
to be chosen to be sufficiently large to avoid the vdW radius
of any active atom touching the interface. The resulting shape
of the dielectric interface in the SMBP is illustrated in Figure
2. A previous evaluation of the GSBP showed that its
accuracy deteriorates close to the boundary of the inner
region.21,35 Therefore, it was found necessary to freeze the
outer layer of the inner region, providing an “insulation”
region with a thickness of 2-3 Å.21 In Figure 2, this is the
area between the red and black line. Here, the atoms are
described explicitly, but their positions are fixed.

The construction of the SMBP is based on the same
approximations as in the case of the GSBP. Outer macro-
molecule and bulk solvent regions are represented by fixed
point charges and a PDC, respectively, so that the electro-
static contributions to the PMF consist of direct Coulombic
interactions (Uelec

io ) and the solvation free energy (∆Welec
solv).

Again, the outer-outer contribution to the solvation free
energy is constant and therefore neglected, so that the SMBP
takes the following form:

As in the GSBP, the electrostatic interactions of the inner
region with the outer region charges (Uelec

io ) and with the
response of the PDC to the outer region charges (∆Welec

io )
are combined for efficient computation (eq 6).

∆Welec
GSBP ) ∑

A∈MM

qAφs
o(rA) + ∫ dr FQM(r) φs

o(r) +

1
2 ∑

mn

Qm
QMMmnQn

QM + ∑
mn

Qm
QMMmnQn

MM,cs +

1
2 ∑

mn

Qm
MMMmnQn

MM

(9)

FQM(r) ) ∑
A

qA
Mulliken(rA) δ(r - rA) (10)

Figure 2. Definition of the constant dielectric interface in the
SMBP and the GSBP. The extended cavity region is encircled
by the dashed black line, and the implicit solvent region is
indicated by the hatched area. An “insulation” region of frozen
explicit atoms (black circles) ensures (see text) that the
dielectric interface is not touched by the van der Waals radius
of any active explicit atom (white circles). The inner region
and the active region are encircled by red and black lines,
respectively.

∆Welec
SMBP ) Uelec

io + ∆Welec
io + ∆Welec

ii (11)

∆Welec
SMBP ) ∫ dr Fi(r) φs

o(r) + ∆Welec
ii (12)
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In the GSBP, ∆Welec
ii is approximated by a closed-form

expression that is based on a basis set representation of the
inner region charge distribution and the reaction field Green’s
function (see eqs 7 and 8). This approach is designed for
MD simulations but is computationally not efficient for
geometry optimizations or single-point calculations. Using
a standard-sized basis set to represent the charge density,
computation of the reaction field matrix corresponds to
solving the PB equation about 800 times. Even with a large
active region, geometry optimizations rarely take more than
than 800 steps to converge, and therefore solving the PB
equation after each step is more efficient. Since geometry
optimizations are the field of application of the SMBP, we
use a different ansatz and update the individual contributions
to the PMF by solving the PB equation whenever needed.
This is the main conceptual difference between SMBP and
GSBP.

In the QM/MM/SMBP approach, the inner region charge
distribution splits up into QM and MM charge densities,
leading to a more complicated expression.

This can also be formulated as the interaction with the
individual potentials φtot

QM and φtot
MM that are experienced by

the QM and MM charge densities, respectively:

with

Both inner region reaction field potentials, φrf
QM and φrf

MM,
are computed by solving the PB equation in solution and in
a vacuum with all charges set to zero except the explicit
QM and MM charges, respectively (see eq 4). Since φrf

QM

and φrf
MM depend on the inner region charge distributions,

they have to be calculated for each inner region configuration,
that is, after each step in a geometry optimization.

Moreover, computation of the QM reaction field potential
is exacerbated by the mutual dependence of the QM wave
function and the QM reaction field potential via the QM
charge density. To find a self-consistent solution to the SCF
and the PB equation at the same time, a doubly iterative
self-consistent reaction field (SCRF) scheme is employed.

In previous implementations of the GSBP for QM/MM
methods, the interaction of the QM charge density was
modeled by QM Mulliken charges interacting with the
boundary potential. Although this leads to simple additional
terms that have to be added to the Fock matrix, it also
necessitates modifications to the QM programs.20,21 In
accordance with the modular philosophy of ChemShell, a

different approach is used in the SMBP to describe the
interaction of the QM charge density with the boundary
potential. The boundary potential is projected onto a set of
N virtual surface charges {qi}, which are distributed uni-
formly on a sphere with radius Rinner + ∆R that defines the
extended dielectric cavity (see Figure 3).

The values of the surface charges are optimized to
reproduce φtot

QM at the position of the QM atoms by minimiza-
tion of the penalty function F̃.

The minimization of F̃ starts with all virtual surface
charges set to zero. The charges are optimized with a
conjugate gradient algorithm until φtot

QM is reproduced with a
maximum absolute deviation of 2 × 10-5 au at the position
of every QM atom. The QM wave function is optimized
in the presence of the atomic charges of the inner MM
region and the virtual surface charges. The surface charge
projection approach has the advantage of allowing the
application of the SMBP in combination with every QM
program that can handle external point charges.

For each new geometry, the MM reaction field potential
φrf

MM is computed by neglecting all charges in the outer region
and the QM region. Since the MM charges are not polarizable
and the potential is independent of the QM charge distribu-
tion, the MM reaction field does not have to be updated due
to changes in the QM density. Subsequently, a SCRF
calculation proceeds as follows: (1) Initially, the QM reaction

∆Welec
SMBP ) 1

2 ∫ dr dr′[FQM(r) + FMM(r)] ×

Grf(r, r′)[FQM(r′) + FMM(r′)] +

∫ dr[FQM(r) + FMM(r)] φs
o(r)

(13)

∆Welec
SMBP ) ∫ dr FQM(r) φtot

QM(r) + ∫ dr FMM φtot
MM(r)

(14)

φtot
QM(r) ) φs

o(r) + φrf
MM(r) + 1

2
φrf

QM(r) (15)

φtot
MM(r) ) φs

o(r) + 1
2
φrf

MM(r) (16)

Figure 3. Distribution of virtual surface charges used to
represent the SMBP (green balls) in the case of p-hydroxy-
benzoate hydroxylase (see section 4.2). The QM region and
the explicit MM region are shown as a ball-and-stick model
and as gray lines, respectively.

φtot
QM(r) ≈ ∑

i

N qi

|r - ri|
(17)

F̃ ) ∑
j

QM [φtot
QM(rj) - ∑

i

N qi

|rij|]2

(18)
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field potential φrf
QM is computed on the basis of a guess for

the atomic QM charges. (2) Then, the total potential
experienced by the QM atoms, φtot

QM, is assembled and
projected onto a set of virtual surface charges {qi}. (3) Next,
the QM wave function is computed in the field of the inner
MM region point charges and the surface charges. After
convergence, the QM ESP charges based on the new wave
function are calculated. (4) With these new QM charges, the
PB equation is solved again to update the QM reaction field
potential. (5) Finally, the potential is checked for conver-
gence. If the deviations in the QM reaction field potential
are too large, the algorithm returns to step 2 and updates the
wave function and the QM reaction field potential. (6) Upon
convergence, the force contributions from the total potential
are computed and added to the gradient.

These force contributions are the derivative of the elec-
trostatic contribution to the PMF with respect to the atomic
coordinates. For a QM atom, this yields

with

Projection of the total gradient potential φtot
grad onto a set

of K gradient surface charges {qp} leads to the following
approximation:

These terms are computed and added to the QM gradient
automatically by every standard quantum chemistry code if
the QM gradient calculation is performed in the presence of
a set of point charges that encompasses the point charges of
the inner MM atoms and the gradient surface charges. For
SCF wave functions, solution of the CPSCF equations is not
necessary for gradient computations, since all terms involving
derivatives of variationally optimized orbital coefficients are
zero. In the QM/MM/SMBP approach, however, the Fock
matrix in the gradient calculation is not strictly diagonal
because the virtual surface charges are different in the energy
and the gradient calculations (see eqs 15 and 20). Thus, the
QM wave function is not converged in the field of the
gradient surface charges. However, the QM contribution to
the total gradient potential is very small, and the differences
between virtual surface charges for energy and gradient
calculations are therefore almost zero. By comparison to
finite-difference gradient calculations, we found that all terms
involving orbital coefficient derivatives can be neglected in

geometry optimizations with standard convergence criteria
(see Table S1 in the Supporting Information). If the dielectric
constant of the solvent region is 1, that is, in case of a
calculation in vacuo, all reaction field contributions are zero,
and the analytical gradient is exact within the QM/MM/
SMBP approximation. In summary, the potential projection
approach offers a two-fold advantage: First, the SMBP can
be used in combination with every quantum chemistry code,
and second, solution of the CPSCF equation can be avoided
for all practical purposes. Conceptually similar SCRF
procedures have been used previously to combine pure QM58

and hybrid QM/MM approaches59 with implicit solvation
models. The method presented in this work extends upon
these approaches and employs a combination of the SCRF
procedure and virtual surface charges to compute and
represent a boundary potential that mimics not only the
implicit solvent but also the outer macromolecule region.

For an MM atom, the derivative takes a similar form:

As the MM charges are constant, the derivative of the MM
charge distribution is just the derivative of the function that
is used to distribute the MM charges onto the grid employed
for solving the PB equation.60

2.4. QM/MM/GSBP-FEP Approach. Since the QM/
MM-FEP approach has been presented in detail previously,2,10

we discuss it only briefly to explain how the SMBP makes
it possible to use the QM/MM/GSBP method for all QM/
MM Hamiltonians.

In the FEP approach, the free energy difference is divided
into three contributions that are computed individually:

At first, the potential energy profile is calculated by means
of constrained optimizations. A reaction coordinate � de-
scribing the reaction is defined and used to split the reaction
into discrete windows characterized by a corresponding value
of �i. For each window i, the reaction coordinate is
constrained to some �i, and all other QM and MM degrees
of freedom are optimized. This yields the potential energy
profile of the reaction and a set of geometries along the
reaction coordinate.

Next, the difference of the free QM/MM interaction
energy, ∆AQM/MM

ifi+1 , between every two adjacent windows i
and i + 1 is calculated. The difference is computed as a
“perturbation” of the structure of window i with the QM
structure of window i + 1.

The change in the free energy that corresponds to the
perturbation of the QM structure is obtained by sampling
over the MM phase space at window i. This means that the
MM forces refer to the interaction with the QM structure of
window i, which is frozen during sampling.

∂

∂xA
∆Welec

SMBP ) ∂

∂xA

1
2 ∫ dr dr′ FQM(r) Grf(r, r′) FQM(r′) +

∂

∂xA
∫ dr dr′ FQM(r) Grf(r, r′ FMM(r′) +

∂

∂xA
∫ dr FQM(r) φs

o(r)

) ∫ dr[ ∂

∂xA
FQM(r)] φtot

grad(r)

(19)

φtot
grad(r) ) φs

o(r) + φrf
MM(r) + φrf

QM(r) (20)

∂

∂xA
∆Welec

SMBP ≈ ∫ dr[ ∂

∂xA
FQM(r)] [ ∑

p

K qp

|rp - r|]
(21)

∂

∂xA
∆Welec

SMBP ) ∫ dr[ ∂

∂xA
FMM(r)] φtot

grad(r) (22)

∆A ) ∆EQM + ∆AQM/MM + (∆AQM - ∆EQM)
(23)

∆Epert
ifi+1 ) EQM/MM(rQM

i+1, rMM
i ) - EQM/MM(rQM

i , rMM
i )

(24)
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Here, � is 1/(kBT), with kB being the Boltzmann constant.
Using the electronic embedding scheme,61 an exact calcula-
tion of the electrostatic QM/MM interactions necessitates
solving the SCF equations for each MM configuration during
sampling. In the QM/MM-FEP approach, computation of
these interactions is drastically simplified by two assump-
tions: the QM density is frozen and approximated by atomic
ESP charges. Therefore, all QM calculations are avoided
during sampling.

Finally, the energy of the QM part is corrected for entropic
effects. At the stationary points, the correction (∆AQM -
∆EQM) is evaluated from harmonic frequency calculations
of the QM atoms and standard methods from statistical
thermodynamics.2,62

The SMBP allows computation of the potential energy
profile and the molecular and electronic structures of the
discrete windows with the same approximations as in the
GSBP. The outer region solvent molecules are represented
by a PDC and the outer macromolecule charges by fixed
point charges. The explicit atoms do not interact directly with
all outer region charges but only with the potential that is
induced by these charges in interaction with the PDC. This
potential is computed as the finite-difference solution to the
PB equation and is saved on a grid, which allows massive
computational savings. Therefore, the geometries, QM densi-
ties, and ESP charges that result from (constrained) geometry
optimizations with the QM/MM/SMBP method can be used
for sampling the free energy difference over the MM phase
space with the GSBP. At this point, it seems adequate to
highlight the complementary nature of the approximations
in QM/MM-FEP and in the GSBP. The QM/MM-FEP ansatz
reduces the problem of configurational sampling with a QM/
MM Hamiltonian to a sampling over MM phase space with
a classical MM method. The GSBP enhances the efficiency
of classical MM simulations by representing the outer part
of the system by a boundary potential. Hence, these two
approaches complement each other and may be combined
without a loss of efficiency. Also in the GSBP, the QM
density is represented by the ESP charges, leading to simple
expressions for the QM multipole moments and the interac-
tion with the static outer region potential.

Since values and positions of the ESP charges are different
for windows i and i + 1, the GSBP will contribute to the QM/
MM energy difference that is sampled in eq 25. As the QM
atoms are fixed, computation of the QM gradient in interaction
with the GSBP is not necessary. The MM gradient is calculated
in analogy to other QM/MM/GSBP implementations.20,34

3. Computational Details

The SMBP was implemented in a developmental version of
the modular program package ChemShell.56,63 The energy

and gradient evaluations for the QM part were performed
with the MNDO64 and Turbomole 5.7.1 programs.65 For the
MM part, the DL_POLY66 code was employed to run the
CHARMM22 force field in all calculations.67 Hydrogen link
atoms in combination with the charge-shift scheme56 were
applied to saturate the QM system. Stationary points were
optimized in hybrid delocalized internal coordinates using
the HDLCOpt optimizer.68 The PB equation was solved with
the ChemShell PB module that uses the optimal successive
over-relaxation method in combination with Gauss-Seidel
relaxation to compute the electrostatic potential.69,70 A
maximum absolute change in every grid point of 2 × 10-5

au was employed as a convergence criterion. Third-order B
splines were used to interpolate between the grid points.71

The definition of the dielectric boundary was based on vdW
radii from the CHARMM22 force field. All MD simulations
were performed unter NVT conditions at a temperature of
300 K, which was controlled by a Nosé-Hoover chain
thermostat.72-75 The mass of deuterium was assigned to all
hydrogen atoms, and free water molecules were kept rigid
with SHAKE constraints.76 A time step of 1 fs was used.
The QM reaction field potential was considered converged
when the root-mean-squared deviation dropped below 2 ×
10-5 au. In the first iteration of the SCRF procedure, all QM
atoms were assumed to be neutral.

4. Results

In this section, we evaluate the performance of the SMBP
using three test cases: the proton transfer reaction in solvated
glycine, the hydroxylation reaction in p-hydroxybenzoate
hydroxylase (PHBH), and the spin state energy gaps in
cytochrome P450cam. Glycine surrounded by explicit water
molecules is a highly flexible and polar system, which makes
it a challenging test case: the reaction energy of the
intramolecular proton transfer is sensitive to the description
of the solvent, and many solvation models incorrectly predict
the neutral form to be more stable than the zwitterionic
form.77-80 The hydroxylation reaction in the catalytic cycle
of PHBH has been much studied theoretically9,81-85 and has
become a prototypical test system for benchmarking theoreti-
cal treatments of enzymatic reactions.12 The relative spin
state energies of cytochrome P450cam86,87 provide another,
rather different test case: here, we address the pentacoordi-
nated ferric complex whose spin state energies are strongly
affected by the protein environment.88 Taken together, we
thus have three diverse systems to evaluate the accuracy and
range of applicability of the SMBP.

Previous studies indicate that it may sometimes be
important to allow fluctuations in the number of solvent
molecules in approaches based on inner regions of fixed
size.89,90 This should not be problematic in the present test
calculations, which address localized events at the center of
the inner region (using a fixed number of solvent molecules).

4.1. Glycine in Water. The glycine/water model system
was set up using a commonly applied protocol of solvation
and equilibration steps by means of classical MD simulations
with the CHARMM program.91 The glycine molecule was
solvated in a TIP3P water ball with 30 Å radius. All water
molecules with an oxygen atom within 2.8 Å of any glycine

∆AQM/MM
ifi+1 ) -1

�
ln〈exp(-�∆Epert

ifi+1)〉MM,i (25)

Qn
QM ) ∑

A∈QM

qA
ESPbn(rA) (26)

∫ dr FQM(r) φs
o(r) ) ∑

A∈QM

qA
ESP

φs
o(rA) (27)
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atom were deleted, and the system was equilibrated. These
steps were repeated until the number of water molecules was
stable, leading to a total system size of 12 769 atoms with
4253 TIP3P water molecules. Finally, the system was
equilibrated by means of a 500 ps classical MD simulation,
and five configurations were selected after 340, 380, 420,
460, and 500 ps. For each configuration, the inner region
was centered on the CR carbon of the glycine and defined to
encompass all water molecules with any atom within 18 Å
of the center. In all subsequent QM/MM geometry optimiza-
tions, the glycine molecule and all water molecules with any
atom within 14 Å of the center were allowed to move, while
all other water molecules were frozen. The radius of the
extended dielectric cavity was set to 21 Å, and a set of 90
virtual surface charges was used to represent the boundary
potential in the QM calculations. The glycine molecule was
described quantum mechanically with the AM1 Hamilto-
nian,92 and the water molecules were treated by the force
field or the SMBP. The details of this setup are summarized
in Table S2 (Supporting Information).

In a vacuum environment, that is, with a dielectric constant
of 1 anywhere in space, the electrostatic potential of the
SMBP has to be identical to the exact potential from
Coulombic electrostatics. Therefore, the accuracy of the QM/
MM/SMBP approach can be evaluated in vacuo by direct
comparison to standard QM/MM calculations. To allow the
use of finely spaced grids in the finite-difference solution of
the PB equation also for large biomolecules, we employed
a focusing approach.93 The PB equation is first solved with
a coarse outer grid that covers the full biomolecule. Then,
the PB equation is solved again with a fine inner grid that
focuses onto the inner region. The boundary values of the
inner grid are set by interpolation from the outer grid. The
spacings of the two grids are the most important parameters
of the SMBP. Hence, the accuracy of the SMBP was
evaluated for all mesh size combinations of 0.15, 0.25, 0.4,
0.6, and 0.8 Å for the inner grid and 0.80, 1.25, 1.50, 1.75,
and 2.50 Å for the outer grid.

Tables 1 and 2 show the mean absolute (MAD) and
maximum absolute deviations (MAX) of the components of
the electrostatic gradient for configuration 1. Similar devia-
tions were observed for the other configurations (see Tables
S3 and S4 in the Supporting Information). Although only
90 virtual surface charges are used to represent the static
potential that is induced by almost 10 000 atoms in the outer
region, the electrostatic gradient at the position of the QM
atoms is reproduced with high accuracy. For all mesh size
combinations, the MAD and MAX values are on the order
of 0.3 × 10-4 au and 1.6 × 10-4 au, respectively. Moreover,
the accuracy seems to be independent of the grid spacing
within the chosen limits. Both findings suggest that the static
outer region potential varies only slowly and has no detailed
structure in the QM region.

Considering all atoms within 16 Å of the center, the SMBP
reproduces the gradient of the electrostatic potential with high
accuracy if the spacing of the inner grid is e0.4 Å. Under
these conditions, the MAX values are below 4 × 10-4 au.
The spacing of the outer grid does not influence the accuracy
unless very fine inner grids are used. As one approaches the

boundary separating inner and outer regions, the static outer
region potential naturally becomes stronger and more
complex. Nevertheless, its details are captured with sufficient
accuracy also at the position of all inner region atoms which
have a distance of up to 20 Å to the center due to the residue-
based selection criterion that was employed to define the
inner region. With an inner grid spacing of e0.25 Å, the
MAD values do not exceed 0.4 × 10-4 au, and maximum
deviations are around 5.5 × 10-4 au.

The accuracy of the SMBP depends strongly on the radial
position of the atoms since the electrostatic potential is more
complex at the boundary. Figure 4 illustrates this point and
shows that the increase of the MAD and MAX values in
proximity to the boundary is strongly affected by the mesh

Table 1. Mean Absolute Deviations (MAD) [10-4 au] of the
Electrostatic Forces Computed with the SMBP for
Configuration 1 of the Glycine/Water Systema

inner grid size [Å]

outer grid size [Å] 0.15 0.25 0.40 0.60 0.80

MAD - QM atoms
0.80 0.31 0.31 0.31 0.32 0.31
1.25 0.31 0.31 0.31 0.31 0.31
1.50 0.35 0.32 0.33 0.33 0.33
1.75 0.33 0.32 0.32 0.32 0.32
2.50 0.33 0.34 0.34 0.34 0.33

MAD - atoms within 16 Å
0.80 0.18 0.10 0.15 0.20 0.26
1.25 0.21 0.15 0.19 0.23 0.28
1.50 0.28 0.21 0.26 0.29 0.34
1.75 0.26 0.19 0.24 0.27 0.32
2.50 0.29 0.23 0.28 0.30 0.35

MAD - atoms within 20 Å
0.80 0.23 0.27 0.57 1.02 1.42
1.25 0.28 0.32 0.61 1.04 1.44
1.50 0.37 0.38 0.67 1.09 1.48
1.75 0.34 0.36 0.65 1.08 1.46
2.50 0.38 0.39 0.68 1.10 1.48

a Different mesh size combinations were used.

Table 2. Average Maximum Absolute Deviations (MAX)
[10-4 au] of the Electrostatic Forces Computed with the
SMBP for Configuration 1 of the Glycine/Water Systema

inner grid size [Å]

outer grid size [Å] 0.15 0.25 0.40 0.60 0.80

MAX - QM atoms
0.80 1.53 1.64 1.57 1.55 1.60
1.25 1.62 1.69 1.65 1.65 1.67
1.50 1.62 1.66 1.64 1.64 1.66
1.75 1.59 1.65 1.61 1.61 1.64
2.50 1.57 1.63 1.60 1.60 1.62

MAX - atoms within 16 Å
0.80 1.53 1.64 3.72 7.16 9.08
1.25 1.67 1.90 3.68 7.08 8.89
1.50 3.22 2.90 3.91 7.30 9.45
1.75 2.32 2.44 3.73 7.14 9.02
2.50 3.15 3.06 3.88 7.19 9.51

MAX - atoms within 20 Å
0.80 2.41 5.43 14.79 35.67 35.35
1.25 2.91 5.57 14.59 35.46 35.27
1.50 4.93 5.79 14.53 35.42 34.71
1.75 3.60 5.64 14.52 35.39 35.03
2.50 4.67 5.51 14.25 35.11 34.81

a Different mesh size combinations were used.
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size of the inner grid. The deviations increase only slowly
with grid spacings of 0.15 or 0.25 Å, and much more rapidly
for coarser inner grids.

Overall, the accuracy provided by the SMBP is sufficient
for QM/MM geometry optimizations where the default
convergence criterion is a maximum gradient component of
4.5 × 10-4 au.68 Therefore, an inner grid spacing of 0.25 Å
excels as the best choice, providing high accuracy at tolerable
computational costs. Using a finer grid spacing of 0.15 Å
seems to yield only marginal improvements but raises
computational demands significantly. The mesh size of the
outer grid has no observable influence on the accuracy. Since
computational costs are only slightly affected by the outer
grid spacing, we opt for a rather fine outer grid with a mesh
size of 1.25 Å in combination with an inner grid spacing of
0.25 Å in all calculations.

Representation of the boundary potential by a small set
of point charges in the QM calculations is one of the main
approximations connected with the SMBP. The accuracy
converges rapidly with respect to the number of point
charges, as illustrated in Figure 5. The MAD and MAX
deviations of the gradient components are around 0.3 × 10-4

and 1.7 × 10-4 au, respectively, if the number of point
charges is greater than 20. The residual error is not caused
by the point charge representation but results from the limited
accuracy of the boundary potential, which is computed from
a finite-difference solution of the PB equation. Similar
deviations are encountered for the MM atoms within 16 Å
of the center that interact directly with the boundary potential
without a charge representation (see Tables 1 and 2). Hence,
higher accuracies can only be achieved with finer mesh sizes
and not with a higher number of virtual surface charges. A
set of 90 point charges was employed for all calculations
reported in this article.

Using electronic embedding, computation of QM/MM
energies and gradients necessitates evaluation of numerous
one-electron integrals and their derivatives with respect to
the position of the MM atoms. Therefore, computation of
these terms constitutes a significant share of the total
computational costs of the QM calculation. The SMBP
allows us to replace the numerous outer MM atoms by a

small set of point charges that reproduces the electrostatic
potential in the QM region. In a vacuum environment, the
analytical QM/MM/SMBP gradient is exact, and the ad-
ditional costs of the SCRF procedure can be avoided. Hence,
application of SMBP in vacuo offers a reduction of com-
putational costs for QM/MM geometry optimizations. As in
standard QM/MM calculations, the bulk solvent is then
modeled by fixed water molecules which contribute to the
static outer region potential (φs

o in eq 12). Table 3 shows
the computation times for the QM part of single-point QM/
MM and QM/MM/SMBP energy and gradient evaluations.
Timings were performed for three QM methods: the semiem-
pirical AM1 method, the pure density functional BLYP,94,95

and the hybrid density functional B3LYP.96 Two different
basis sets were employed in the density functional theory
calculations: the small SVP97 and the larger TZVPP98 basis
sets. If the QM calculation is not dominated by the two-
electron part, that is, if semiempirical methods, pure func-
tionals, or small basis sets are employed, application of the
SMBP can reduce computational costs by up to 60%. Even

Figure 4. Mean absolute deviations (a) and maximum absolute deviations (b) of the electrostatic forces of all atoms inside the
active region relative to the exact QM/MM values. Results are shown for different mesh sizes of the inner grid and plotted as a
function of the radius of the active region. An outer grid size of 1.25 Å is used, and all calculations were performed on configuration
1 of the glycine/H2O test system. The radius of the inner region was 18 Å (see text).

Figure 5. Mean absolute (MAD) and maximum absolute
deviations (MAX) of the QM gradient components relative to
the exact values from full QM/MM calculations. The results
are plotted as a function of the number of point charges that
are used to represent the boundary potential in the QM
calculations. All calculations were performed on configuration
1 of the glycine/H2O test system.
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for the hybrid B3LYP functional with a larger basis set,
computation time is reduced by about 30%. Computational
savings strongly depend on the size of the QM region, the
inner region and the outer region, and on the QM method
employed and can vary significantly for different systems.

The reaction and activation energies for the intramolecular
proton transfer process in glycine (Figure 6) were computed
using the standard QM/MM and the new QM/MM/SMBP
Hamiltonian for the five different configurations. The results
in Table 4 show little agreement of QM/MM and QM/MM/
SMBP results for the individual configurations. For configu-
rations 3 and 5, deviations of the QM/MM/SMBP results
from the QM/MM values are on the order of 1 kcal/mol.
Higher deviations of reaction and activation energies up to
6 kcal/mol are encountered for the other configurations.
These strong discrepancies can be attributed to the high
flexibility and polarity of the system. A closer inspection of
the reactant structures revealed that a small number of water
molecules at the boundary of the active region adopt a
different orientation in the QM/MM/SMBP optimized struc-
tures. Due to the hydrogen-bonding network, some of these
modifications get relayed to the center of the water sphere
and modify the hydrogen-bonding situation in close proxim-
ity to the QM region. For this reason, geometry optimizations
of the starting structures with the QM/MM and QM/MM/
SMBP approach lead to different local minima. Since the
relative energies depend on the solvation of the polar groups

of the reactant and product state, the reaction energies vary
significantly when starting from different local minima.
However, when computations of the reaction profiles are
initiated from the same local minimum, that is, by using QM/
MM optimized geometries as input structures for QM/MM/
SMBP geometry optimizations, both methods provide vir-
tually identical results (see Table 4). This is not practical in
applications where QM/MM/SMBP should be used for
geometry optimizations but shows that QM/MM/SMBP can
reproduce QM/MM results accurately. In summary, for
systems with a large number of close-lying local minima
that have significantly different characteristics, geometry
optimizations using QM/MM and QM/MM/SMBP can yield
deviating results because of convergence to different local
minima.

The mean values of the reaction and activation energies
for the five configurations considered differ by less than 1
kcal/mol between QM/MM and QM/MM/SMBP (Table 4).
Moreover, the mean values from QM/MM/SMBP calcula-
tions lie within the error bars of the QM/MM mean values
(corresponding to a confidence level of 68%), while the
standard deviations within the individual data sets range from
3-6 kcal/mol. One may expect in general that the mean
values of interest from QM/MM and QM/MM/SMBP
optimizations will tend to approach each other for a suf-
ficiently large number of configurations.

4.2. p-Hydroxybenzoate Hydroxylase. The setup for
PHBH was based on a system that has been used in previous
QM/MM studies of PHBH.9,81,82 It was generated by
solvating the enzyme (394 amino acids) containing the flavin-
adenine hydroperoxide cofactor (FADHOOH), the dianionic
p-hydroxybenzoate substrate (pOHB), and 294 crystal-
lographic water molecules in a 90 Å water box. The system
was equilibrated with gradually decreasing harmonic re-
straints on the non-water atoms, followed by a MD run with
harmonic restraints acting only on the FADHOOH and
pOHB. In the resulting structure that served as a starting
point for our setup, all water molecules outside 11 Å from
any protein atom were discarded.9,81,82

Due to a change of force field from GROMOS (previously)
to CHARMM (this study), the system was re-equilibrated
for 500 ps with constraints on the cofactor, substrate, and
all water molecules outside 2.9 Å from any protein atom.
Two configurations were selected from this MD run after
460 and 500 ps that were used as starting structures to locate
the stationary points of the hydroxylation reaction. The QM

Table 3. Computation Time for a Single QM Energy and
Gradient Evaluation for the Glycine/Water Systema

computation time [s]

QM method basis QM/MM QM/MM/SMBP savings [%]

AM1
SVP

0.5 0.2 -57
BLYP 76.8 30.5 -60
B3LYP 87.0 39.5 -54
BLYP

TZVPP
303.1 126.1 -58

B3LYP 542.5 370.5 -31

a All timings were computed serially on 2.6 GHz AMD Opteron
machines with 16 GB of memory.

Figure 6. Intramolecular proton transfer reaction in glycine.

Table 4. Reaction and Activation Energies for the Proton Transfer Reaction in Solvated Glycine

reaction energies [kcal/mol] activation energies [kcal/mol]

configuration QM/MM QM/MM/SMBP QM/MM/SMBP(opt)a QM/MM QM/MM/SMBP QM/MM/SMBP(opt)a

1 6.84 8.42 6.88 30.01 30.09 30.01
2 9.54 15.61 9.61 32.28 36.43 32.31
3 6.51 7.68 6.61 26.82 27.10 26.84
4 7.27 1.39 7.28 31.18 27.92 31.14
5 13.57 14.58 13.53 32.66 33.35 32.62
mean value 8.75 9.54 8.78 30.73 31.20 30.58
standard deviation of datab 2.94 5.77 2.91 2.69 4.46 2.34
standard deviation of meanc 1.32 2.58 1.31 1.20 1.99 1.04

a Starting from QM/MM optimized structures. b Standard deviation of individual energy values. c Standard deviation of the mean value
(68% confidence limit).

J. Chem. Theory Comput., Vol. 5, No. 11, 2009 3123



region consisted of pOHB and the isoalloxazine part of
FADHOOH up to the first methylene unit of the ribityl side
chain that was saturated with a hydrogen link atom. The
semiempirical AM1 Hamiltonian was employed to describe
the QM part. The inner region was centered on the initial
position of the distal oxygen atom of the hydroperoxo group
of FADHOOH. All charge groups with any atom within 18.5
Å of the center belonged to the inner region and were
modeled explicitly. All charge groups with any atom within
16 Å of the center belonged to the active region and were
allowed to move.

In the hydroxylation step of the PHBH catalytic cycle,
the OH unit of the hydroperoxo group of FADHOOH is
transferred to the meta carbon atom of pOHB (see Figure
7). To compute the potential energy profile and split the
reaction into discrete windows for the FEP calculations, a
reaction coordinate was defined:

Here, Od and Op designate the distal and proximal oxygen
atoms of the hydroperoxo unit of FADHOOH, respectively.
Cm is the meta carbon atom of pOHB. Starting from the two
initial structures, the stationary points of this reaction were
located using the QM/MM and the QM/MM/SMBP Hamil-
tonian. Both methods yield similar results (Table 5). For
configuration 1, QM/MM and QM/MM/SMBP geometry
optimizations lead to slightly different local minima, as
indicated by a root-mean-square (rms) deviation (of the active
atoms) of 5.4 pm. However, the reaction and activation
energies deviate by only 1.2 and 0.9 kcal/mol, respectively.
These differences are in the same range as the differences
between the two configurations on the pure QM/MM level.
For configuration 2, both Hamiltonians lead to the same local
minimum with a rms deviation of 0.8 pm. Hence, the reaction
and activation energies differ by only 0.4 and 0.1 kcal/mol,

respectively. The plot of the potential energy profile in Figure
8 illustrates this impressive agreement.

The optimized geometries of the discrete windows along
the reaction coordinate were used as input structures to
sample over the MM phase space in the framework of FEP.
For each window, the QM atoms were fixed, and the QM
charge density was approximated by constant ESP charges.
For the structures that were optimized with the QM/MM/
SMBP Hamiltonian, the GSBP could be applied to accelerate
the MD steps. To avoid mobile water molecules or flexible
residues approaching the boundary separating the inner and
outer regions, the size of the active region was reduced in
the QM/MM/GSBP calculations. Here, all atoms within 15
Å of the center were allowed to move. Moreover, a spherical
restraint with a radius of 17 Å and a force constant of 0.004
au was applied to all active atoms to avoid any mobile
residue leaving the inner region. For both Hamiltonians, the
molecular structure in each window was equilibrated for 10
ps followed by a FEP production run of 10 ps. The resulting
MD data was coarse-grained and subjected to a standard set
of statistical tests to ensure a lack of trend and correlation.10

If necessary, data points at the beginning of the production
run were discarded (at most 4 ps so that production runs
lasted at least 6 ps for each window).

For configuration 1, the free energies of activation and
reaction deviate by 0.9 and 0.1 kcal/mol, respectively (Table
5). The results for configuration 2 are similar with deviations
of 0.3 and 1.6 kcal/mol, respectively. Figure 9 illustrates that
the free energy profiles computed with and without GSBP
agree well for all stages of the reaction. In view of the other
approximations that are necessary for QM/MM-FEP simula-
tions, the deviations caused by the GSBP seem small and
tolerable. Application of the GSBP offers massive compu-
tational savings. In the PHBH system, the computational time
for a single MD step of the FEP calculation is reduced by
95% from 116.2 s to only 4.9 s (Table 6). Even when taking
the GSBP overhead into account, the computational costs
of QM/MM/GSBP-FEP calculations are roughly 1 order of
magnitude smaller than those of standard QM/MM-FEP

Figure 7. Hydroxylation reaction catalyzed by PHBH. R
denotes the ribityl side chain of the flavin cofactor.

Table 5. Potential and Free Energies of Activation and
Reaction of the Hydroxylation Reaction in PHBH [in
kcal/mol]

configuration Hamiltonian ∆E ∆E‡ ∆A ∆A‡

1 QM/MM -47.44 22.42 -50.38 21.27
QM/MM/BPa -48.65 21.56 -50.47 20.40

2 QM/MM -48.90 22.00 -51.28 19.49
QM/MM/BPa -49.33 21.95 -52.84 19.17

a Outer macromolecule region is represented by SMBP in
geometry optimizations and by GSBP in FEP calculations.

� ) d(Od-Op) - d(Cm-Od) (28)

Figure 8. Potential energy profile of the OH transfer reaction
in PHBH computed with QM/MM and QM/MM/SMBP inde-
pendently (configuration 2). The QM atoms are described by
the AM1 method and the MM atoms by the CHARMM force
field.
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calculations. In modeling enzymatic reactions, the combina-
tion of SMBP and GSBP for geometry optimizations and
FEP calculations thus offers good accuracy combined with
high efficiency.

4.3. Cytochrome P450cam. A recent QM/MM study
addressed the steric and electrostatic factors that affect the
geometrical and electronic structure of the pentacoordinated
cytochrome P450cam complexes.88 Among other properties,
the energies of the doublet and quartet states relative to the
sextet state were found to be strongly influenced by the
protein environment. Therefore, we have chosen the spin
state energy gaps of the ferric complex as a challenging
protein test system to see if the SMBP is able to reproduce
such subtle energy differences.

The system setup was based on the X-ray structure of the
ferric complex (PDB code 1DZ4)99 that was subjected to a
standard solvation and relaxation protocol, followed by a
protonation procedure that led to a final system with a total
charge of -9e. Our calculations started from the two
structures selected previously from a classical MD simulation
after 31 and 93 ps.88 For the QM calculations, three different
density functionals were used that combine Becke’s B88
exchange functional94 with a varying fraction of Hartree-Fock
(HF) exchange and the Lee-Yang-Parr (LYP) correlation
functional:95 BLYP, B3LYP,96 and BHLYP.100 We used the
6-31+G* basis for all atoms coordinated to the iron and the
6-31G basis set for the remaining ligand atoms. The iron

atom was described by a Wachters all-electron basis set with
additional sets of diffuse d and polarizing f functions.101-103

The QM region included the iron-porphyrin system of
the heme unit and the sulfur atom of the coordinating Cys357
(with a hydrogen link atom attached to sulfur). The atoms
of all residues with any atom within 4 Å of the heme-Cys357
complex or the camphor substrate were allowed to move;
all other atoms were frozen. In the QM/MM/SMBP calcula-
tions, the inner region was centered on the initial position
of the iron atom with an extended dielectric cavity radius of
29 Å. All residues with any atom within 20 Å of the iron
atom belonged to the inner region and were described
explicitly. The influence of all other residues was mimicked
by the boundary potential.

The initial structures were first optimized in the sextet state
with the QM/MM and the QM/MM/SMBP Hamiltonian,
respectively. The two resulting geometries were subsequently
reoptimized in the quartet and doublet state.

In the original study,88 the B3LYP functional was found to
provide the most realistic description of the spin state splittings
with the correct sextet ground state, although the doublet-sextet
gap is overestimated. Here, we are not interested in the absolute
quality of the QM/MM results but want to know how well the
QM/MM/SMBP approach can reproduce the QM/MM results.
The values for the spin state energy gaps are given in Table 7.
For eight out of 12 energy gaps, the QM/MM/SMBP results
are within 0.1 kcal/mol of the full QM/MM results. The
maximum absolute deviation is 0.21 kcal/mol, and the absolute
deviations of the individual QM and MM components rarely
exceed 0.4 kcal/mol. Moreover, subtle effects are reproduced
very well: When the B3LYP functional is used, the QM
calculation (in the field of the protein point charges) favors the
quartet state over the sextet state by 0.71 kcal/mol in config-
uration 31. This preference is overcompensated by the MM
contribution that favors the sextet state by 1.54 kcal/mol, leading
to a QM/MM energy difference of 0.83 kcal/mol. In the QM/
MM/SMBP calculations both components are reproduced
almost exactly and sum up to an energy gap of 0.82 kcal/mol
in favor of the sextet state. The results for configuration 93 are
similar. These data show that the SMBP reproduces the
electrostatic effects of the protein environment onto the QM
and MM regions accurately, implying that geometry optimiza-
tions with the QM/MM/SMBP approach lead to highly similar
local minima on the potential energy surface compared to
standard QM/MM optimizations. This is corroborated by a
direct comparison of the QM/MM and QM/MM/SMBP opti-
mized geometries in Table S5 (Supporting Information): The
rms deviations (of the active atoms) are usually around 1 pm
or less. Only for the B3LYP optimized structures of configu-
ration 31 are there larger rms deviations of about 6 pm. These
can be traced back to a 30° rotation of a methyl group attached
to the porphine ring in a hydrophobic environment. However,
the corresponding spin state gaps are not affected by this
peripheral conformational change and match almost perfectly.

In summary, optimizations with the QM/MM/SMBP
Hamiltonian lead to biomolecular structures that either are
almost identical to those from full QM/MM optimizations
or they represent nearby local minima which are as repre-
sentative for the molecular and electronic structure of the

Figure 9. Free energy profile of the OH transfer reaction in
PHBH computed with QM/MM and QM/MM/GSBP indepen-
dently (configuration 2, excluding entropic QM contributions).
The QM atoms are described by the AM1 method and the
MM atoms by the CHARMM force field.

Table 6. Computation Time per MD Step [s] in FEP
Simulations of the PHBH Model Systema

module QM/MM QM/MM/GSBP

MM energy+gradient 69.2 2.6
QM energy+gradient 0.4 0.0
FEP 46.6 2.2
GSBP 0.1
total 116.2 4.9

a All values are averaged over 200 MD steps and were
computed serially on 2.6 GHz AMD Opteron machines with 16 GB
of memory.
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biomolecule as those resulting from standard QM/MM
optimizations.

5. Conclusion

In this article, we have introduced a general boundary
potential (SMBP) for hybrid QM/MM calculations that
complements the previously implemented boundary potential
(GSBP). Both the SMBP and the GSBP extend the QM/
MM approach to a three-layer model in which the outer
solvent molecules and outer macromolecule region are
represented by a boundary potential. Therefore, both account
for the effect of bulk solvent and treat long-range electrostatic
interactions accurately and efficiently. In both cases, the
reaction field potential in the inner region needs to be computed
by a finite-difference solution of the Poisson-Boltzmann
equation (describing the bulk solvent as a dielectric continuum).
In the GSBP scheme, this inner reaction field potential is
expressed by its Green’s function and is represented by a
reaction field matrix that is determined once and for all at the
beginning of a simulation and is then used to calculate the
corresponding electrostatic interactions with the inner region
charge density. In the SMBP scheme, the inner reaction field
potential is computed on-the-fly as needed, and the interactions
with the QM density are handled by a self-consistent reaction
field procedure and a set of virtual surface charges that represent
the SMBP in the QM calculations.

The GSBP performs best in MD simulations where the
initial overhead for constructing the reaction field matrix
(typically about 800 Poisson-Boltzmann calculations) is
quickly overcompensated by the gains in each of the many
steps during the MD simulation. The SMBP targets single-
point calculations and geometry optimizations with a limited
number of steps where the on-the-fly approach is most
efficient. Since the approximations in the GSBP and SMBP
treatments are very similar by design, and compatible with
each other, the electronic and molecular structures resulting
from QM/MM/SMBP geometry optimizations can be used
as starting points for sampling over MM phase space using
the QM/MM/GSBP Hamiltonian in the FEP framework. Free
energy calculations on the PHBH enzyme show that this
reduces the computational costs of the FEP calculations by
1 order of magnitude. The combined use of the SMBP and
GSBP for computing potential energy profiles and subsequent
sampling, respectively, thus provides an attractive and
efficient strategy to perform free energy QM/MM calculations.

The GSBP implementation at the QM/MM level requires
modifications of the underlying QM code, and corresponding
work has been reported up to now only for semiempirical
QM methods.20,21 By contrast, because of its representation
in terms of virtual surface charges, the SMBP can be used
with any standard QM code that can handle external point
charges, thus allowing for ab initio QM/MM/SMBP and
DFT/MM/SMBP geometry optimizations in the context of
three-layer QM/MM/continuum models. Another practical
advantage of the SMBP is that it also offers significant
speedups for standard two-layer QM/MM calculations:
thousands of MM charges are replaced by a small set of
virtual surface charges (with little overhead since no SCRF
procedure is required in this case) whose electrostatic
interactions with the inner region are easily computed (with
overall savings typically by a factor of 2).

The accuracy of the SMBP has been evaluated by
comparing the results from QM/MM/SMBP calculations to
those from standard QM/MM calculations for three diverse
test systems: Glycine in water turned out to be problematic
for the SMBP. Due to the high flexibility of the polar solvent,
many close-lying minima with different hydrogen-bond
patterns and different relative energies exist, and as a
consequence, geometry optimizations by QM/MM and QM/
MM/SMBP normally follow a different course and yield
different local minima (unless starting from a given QM/
MM minimum which is retained by QM/MM/SMBP). The
individual reaction and activation energies for proton transfer
in solvated glycine thus differ appreciably between QM/MM
and QM/MM/SMBP, while the mean values for a small
sample of five configurations are much closer to each other
(within 1 kcal/mol). The two enzymatic test systems are more
rigid. They are treated by the SMBP with impressive
accuracy. Geometry optimizations by QM/MM and QM/
MM/SMBP normally follow the same course and lead to
essentially identical structures, and relative energies differ
on average by less than 1 kcal/mol. The magnitude of these
deviations is comparable to the spread of results that naturally
occurs for different initial configurations. Finally, in the case
of PHBH, the combined use of the SMBP and GSBP leads
to free energy profiles and barriers that are essentially the
same as those from full QM/MM calculations. We conclude
that these boundary potentials enable us to treat enzymes at
the QM/MM level efficiently and with good accuracy.

Table 7. Sextet-Quartet and Sextet-Doublet Energy Gaps in Cytochrome P450cam [in kcal/mol] Computed with the
Standard QM/MM and the Approximated QM/MM/SMBP Hamiltonian for Two Configurations and Three Different Density
Functionals (BLYP, B3LYP, BHLYP)

BLYP B3LYP BHLYP

snapshot Hamiltonian gap QM/MM QM MM QM/MM QM MM QM/MM QM MM

31 QM/MM E(4A)-E(6A) -9.50 -11.31 1.81 0.83 -0.71 1.54 16.49 14.40 2.09
E(2A)-E(6A) -9.98 -9.74 -0.24 6.94 7.11 -0.18 28.80 28.92 -0.12

QM/MM/SMBP E(4A)-E(6A) -9.63 -10.89 1.26 0.82 -0.74 1.56 16.50 14.42 2.08
E(2A)-E(6A) -10.19 -9.80 -0.39 7.10 7.00 0.10 28.70 28.34 0.36

93 QM/MM E(4A)-E(6A) -9.52 -11.00 1.48 0.73 -0.98 1.72 16.40 13.69 2.72
E(2A)-E(6A) -10.66 -10.49 -0.17 6.33 6.75 -0.43 28.74 28.96 -0.22

QM/MM/SMBP E(4A)-E(6A) -9.54 -10.62 1.08 0.83 -0.83 1.67 16.34 13.69 2.65
E(2A)-E(6A) -10.70 -10.32 -0.39 6.44 6.36 0.08 28.66 29.00 -0.35
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Abstract: We present a systematic study of the ability of low-resolution experimental data,
when combined with physical/statistical scoring functions, to improve the quality of theoretical
structural models of proteins and protein complexes. Particularly, we have analyzed in detail
the “extra value” added to the theoretical models by: electrospray mass spectrometry (ESI-
MS), small-angle X-ray scattering (SAXS), and hydrodynamic measurements. We found that
any low-resolution structural data, even when (as in the case of mass spectrometry) obtained
in conditions far from the physiological ones, help to improve the quality of theoretical models,
but not all the coarse-grained experimental results are equally rich in information. The best
results are always obtained when using SAXS data as experimental constraints, but either
hydrodynamics or gas phase CCS data contribute to improving model prediction. The combination
of suitable scoring functions and broadly available low-resolution structural data (technically
easier to obtain) yields structural models that are notably close to the real structures.

Introduction

The prediction of the three-dimensional structures of proteins
based only on the knowledge of their sequences has been
the “Holy Grail” of computational biology for many years.
Proteins with very close homologues of known structure can
now be safely modeled with a quite good global quality,1,2

but there are still many proteins for which homologues cannot
be found in structural databases, and they have to be modeled
based on more risky threading or ab initio methods.2 Recent
versions of these programs, combined with suitable scoring
functions, are able to provide ensembles of reasonable
solutions among which the real one is hidden. Unfortunately,
as CASP experiments have demonstrated,3 it is not always
easy to detect the best solution among many reasonable ones.
The situation is even more challenging in the prediction of
protein-protein complexes, especially in those cases where
an important degree of structural distortion in the monomers
is required for the assembly. Although recent CAPRI (http://
www.ebi.ac.uk/msd-srv/capri) experiments have demon-
strated that, at least in some cases, it is possible to produce
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theoretical models of sufficient quality for accurate biological
and functional annotation, there are still too many cases for
which even the best protein-protein docking codes suggest
structural models that are very far from the reality.4 Errors
in the prediction of the structure of proteins or protein
complexes might lead to the design of irrelevant experiments
and to the formulation of erroneous functional hypothesis.

Due to the complexity of predicting the structure of
proteins and protein complexes based only on theoretical
methods, several authors have supported the use of experi-
mental data to restrain the accessible space to be sampled
by the theoretical algorithms. In this field, the combination
of physical methods like molecular dynamics (MD) with
high-resolution techniques, such as X-ray or NMR spectros-
copy, has been very fruitful for many years and is considered
the gold standard for protein structure determination.5

Unfortunately, high-resolution methods are not always easy
to apply in a high-throughput mode for proteins of moderate
or large size, and MD is not the best technique to predict
the novo protein structures due to CPU requirements and to
force-field uncertainties. Thus, alternative methods need to
be designed to combine methods for the prediction of the
structure of proteins and protein complexes with easy-to-
obtain low-resolution structural data.

Evolutionary analysis, through the detection of correlated
mutations,6 the evolutionary trace method,7 or the use of
environment-specific substitution tables,8 is a source of low-
resolution data that can be easily incorporated into structure
prediction to discard unlikely models.9-11 Site-directed
mutagenesis has been another source of data on the location
of individual residues in different protein regions or on the
relative positioning of pairs of residues in the three-
dimensional structure.12,13 A similar type of information can
be obtained by using covalent cross-linkers coupled, for
example, to mass spectroscopic measures.14 However, all
these techniques have obvious caveats: (i) evolutionary
analysis from multiple sequence/structure alignments is prone
to error, and it requires a massive amount of data that is not
always available, and (ii) site-directed mutagenesis and cross-
linking experiments are technically complex and (as cor-
related mutations) provide only local information of a few
selected residues, not on global three-dimensional structure.
Cryo-electron tomography is a very promising technique able
to provide detailed structural information of the sample but
not fast and cheap enough, yet, to be easily used in a high-
throughput context. We believe that more general structural
information on proteins and complexes can be gained from
other low-resolution biophysical methods, such as the small-
angle X-ray scattering (SAXS) hydrodynamic radius (Rh)
estimations derived from hydrodynamic measurements or the
apparent charge or collision cross-sections (CCS) determined
in mass spectroscopy experiments. All these methods are
simple and fast and can be performed at a high-throughput
regime, making them ideal for proteome-scale or cell-scale
determination of proteins or protein-protein complexes.
Unfortunately, none of them is able to provide by themselves
unambiguous three-dimensional structural models of proteins.
In this paper, we provide a systematic analysis on the
robustness of these low-resolution data and on their ability

to enrich structural predictions of theoretical models of
protein and protein-protein complexes.

Methods

Calculation of Synthetic Low-Resolution Structural
Data. We have explored three experimental observables
providing low-resolution structural information on proteins:
(i) the collision cross-section (CCS), (ii) the small-angle
X-ray scattering spectra (SAXS), and (iii) the hydrodynamic
radius (Rh). CCS is experimentally derived from the time-
of-flight of protein ions in a spectrometer drift tube in the
presence of inert gases under electrospray vaporization
conditions and provides information on the effective area of
collision of the inert molecules with a protein under vacuum
conditions.15 SAXS profiles are experimentally obtained from
the analysis of the elastically scattered X-rays by particles
in solution and provide low-resolution (>15 Å) structural
information of them, essentially referring to their size and
shape.16-18 Finally, the hydrodynamics radii also provide
information on the overall size of the proteins determined
by its self-diffusion coefficients via the Stokes-Einstein
relationship.19 For benchmark purposes, low-resolution
structural data were simulated here from known experimental
structures or from MD trajectories to probe the robustness
of the data to dynamics and/or environmental effects (see
below).

A subset of CCS values were evaluated using: (i) the most
accurate (but computationally demanding) trajectory method
(TM),23 where the colliding ions are treated as a collection
of atoms, each one represented by a 12-6-4 potential (i.e.,
including a realistic treatment of long-range interactions
between the ion and the buffer gas, which have been found
to significantly affect the CCS), and the orientationally
averaged collision integral is determined by averaging over
all possible collision geometries and (ii) the faster but less
accurate projection approximation (PA), as implemented in
the sigma software,31 which essentially finds the average
“shadow” as a trial conformer is rotated through all possible
orientations, disregarding the details of the scattering process.
The good correlation between PA and TM values (r ) 0.99,
data not shown) allowed to extrapolate accurate TM-CCS
values by applying an empirical correction factor of 1.3 to
the PA-CCS estimates. The SAXS curves were simulated
by means of the CRYSOL program22 using default param-
eters, and the HydroNMR20 software package was used to
calculate Rh using a value of 3.3 Å as the atomic element
radius.21 The calculation of low-resolution parameters from
known experimental data raises some concerns that need to
be considered before evaluating the information load con-
tained in these data: (i) in the case of CCS, experimental
measures are recorded in the gas phase, and it is not clear
how well gas-phase structures represent solution ensem-
bles,24,25 (ii) Dynamics effects are expected to introduce non-
negligible changes of different magnitude, and (iii) low-
resolution experimental measures are always prone to errors
and to uncertainties that cannot be neglected. Thus, as a first
step in our study, we checked the goodness of gas-phase
electrospray mass spectrometric (MS-ESI) experiments as
sources of structural information on the solution structure.
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This was done by performing extended (0.1 µs long) MD
simulations in gas-phase conditions for different proteins:
bovine pancreatic trypsin inhibitor (1BPI), Cytochrome c6
(1LS9), egg-white lysozyme (1LYS), and ubiquitin (1UBQ)
as well as protein-protein complexes: (1ACB, 1CBW,
1CSE, and 3TGI). Protein charges were determined from
their empirical relationship to the solvent accessible surface
area (SASA),26 charges were placed at most favorable
positions using an iterative titration algorithm27 which yields
a quite symmetric charge distribution (less careful titration
procedures, leading to local charge concentration, are likely
to produce artifactual unfoldings of protein structure even
during short MD simulations). Previous calculations on a
large set of protein folds27 demonstrated that the trajectories
are not very sensitive to alternative (if reasonable) choices
of titrable site, which means that the ensemble of conforma-
tions sampled for the most stable charge configuration (for
a given charge state) is a good representative of the ensemble
of conformations found experimentally (where different
distributions of charge might coexist). In order to check the
importance of the total charge in the structure, we performed
additional simulations using slightly different charge states
for three proteins for which CCS was experimentally
determined for different charge states (1UBQ, 1LS9 and
1LYS; see data on http://www.indiana.edu/∼clemmer/
Research). For one of the proteins (1UBQ), calculations were
repeated using a large charge density to check whether or
not the protein structure will be stable when very heavily
charged.

MD simulation protocols described elsewhere27 were used
to obtain vacuum trajectories for the different protein
systems. In order to guarantee that results were not con-
taminated from force-field uncertainties, protein simulations
were repeated using three of the most popular force fields
(AMBER-parm03,28 OPLSAA,29 and CHARM2230). These
calculations did not reveal any force-field dependent artifacts,
and accordingly, more costly simulations for protein com-
plexes were performed considering only the parm03 force
field. Snapshots from the 0.1 µs trajectories were collected
every 2 ps and used for structural analysis and for the
computation of the CCS. All gas-phase simulations were
carefully checked to verify the lack of structural distortions
in the gas phase, which could create doubts on the validity
of the CCS measures as descriptors of protein structure in
solution.

The robustness of low-resolution measures to protein
flexibility was analyzed by running MD simulations for the
different proteins and protein complexes (see Table 1) in
aqueous solution using the TIP3P water model32 with
periodic boundary conditions and with particle mesh cor-
rections33 in the isothermal (T ) 300 K) isobaric (P ) 1
atm) ensemble. Trajectories were collected using AMBER
parm03 for 100 ns (10 for complexes) after 1 ns of
equilibration, following the procedure noted elsewhere.27 MD
ensembles were collected and used to predict the Rh, CCS,
and SAXS profiles, which were then compared to those
obtained by a single structure (experimental or the MD-
averaged one). Experimental data, when used to determine
a single structure, have an associated error related to the

technique itself and to the fluctuations in the structure. To
estimate an upper limit for this magnitude, we used the
standard deviations (σ) in the parameters, as provided by
MD simulations, which undoubtedly represent an overesti-
mation of the experimental uncertainty, i.e., values outside
the ( 3σ interval for CCS ((2σ for <�>SAXS and Rh), with
respect to those corresponding to the experimental struc-
tures were disregarded. This choice means that the test of
enrichment below represents then a lower limit of accuracy
for the proposed methodology.

Empirical Scoring Functions. We have complemented
the use of low-resolution structural data by introducing the
empirical scoring functions developed to detect local errors
in the structures of protein monomers and protein complexes,
which are probably not detected in low-resolution structural
data, as those used in this paper. For this purpose, ProSA-
II34 was used to study monomeric proteins, and pyDock35

was used to analyze protein complexes. ProSA-II is a
diagnostic tool that is based on the use of residue-residue
potentials of mean force derived from the statistical analysis
of all available protein structures. The scoring function in
pyDock is composed of “soft-truncate” van der Waals (with
0.1 weighting factor; AMBER parameters; with maximum
values of +1.0 kcal/mol), Coulombic electrostatics (with
distance-dependent dielectric constant, AMBER charges with
the Coulombic term truncated to ( 1.0 kcal/mol), and
accessible surface-area-based desolvation energy with atomic
solvation parameters (ASP) previously optimized for rigid-
body docking. This scoring scheme has shown top perfor-
mance in the scorer experiment at the most recent CAPRI
competition. Before pyDock scoring, incomplete side chains
have been automatically rebuilt with SCWRL 3.0.36

Set of Predicted Structures. The ability of low-resolu-
tion data (supplemented by empirical scoring functions) to
improve model prediction was first tested using all the model
sets submitted to the CASP7 competition. For each model,
CCS, SAXS curve, Rh, and PROSA-II, Z-scores34 were
computed. Models showing one or more of the four observ-
ables (CCS, <�>SAXS, Rh, and Zscore

PROSA) in severe disagreement
(see above) with the corresponding experimental structure
were discarded, and a new prediction set was calculated. In
order to generate the prediction curves of the protein
complexes, all the available models for predictors found in
the CAPRI experiment web site (http://www.ebi.ac.uk/msd-
srv/capri) were used. The general protocol for structure
observable prediction was as above, with the only difference
that we used the energy-based scoring function provided by
pyDock instead of that in PROSA-II. In all cases, refined
predictions were compared to a background model obtained
by repeating the procedure but setting to infinite level of
noise.

Results and Discussion

Effect of Structural Flexibility on Low-Resolution
Data. MD simulations were used to generate ensembles of
conformations for different proteins and protein complexes
and to check the robustness of the different low-resolution
data to structural fluctuations. Average results in Table 1
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and specific examples in Figure 1 demonstrate that flexibility
introduced by MD simulation does not disrupt the native
conformation but leads to a non-negligible oscillation in
structure. Differences in the oscillation of RMSd and Tm-
Scores indicate that most of the structural variation found
along the trajectories is localized in loops, which is expected
to be very mobile in aqueous solution, but the remaining
regions of proteins are quite stable after 0.1 µs (see Figure
1). Very interestingly, the total number of residue-residue
contacts is also very stable along the trajectory (Figure 2),
but individual residue-residue contacts are much more labile.
In fact, less than 50% of the “native” contacts appearing in
the MD-averaged structure are present during the entire
trajectory, while the rest are in fast interchange (Figure 2).
Interestingly, while MD and experimental structures are very
close (see Supporting Information, Figure S1), only 70-80%
of the experimental native contacts are conserved more than
10% of the time in our trajectories. All these results suggest
that some caution is necessary in the interpretation of the
concept of native contact, since large portions of proteins
behave like liquids or melted solids,37 with many residues
being quite promiscuous. On the contrary, the global structure

seems quite insensitive to flexibility effects, suggesting that
the overall structure descriptors, which can be easily obtained
from low-resolution experiments, might be also quite robust
to structural oscillation in water at room temperature. This
is confirmed by inspection of Figures 3 and 4, which illustrate
that all the low-resolution structural descriptors considered
here s CCS, Rh, and SAXS curves s are very stable and
show only moderate variations along the trajectory. All of
these findings strongly suggest that these structural descrip-
tors can be safely used as structural restraints to derive an
average protein (or protein complex) structure.

Reliability of Structural Data Obtained in the Gas
Phase. As noted above, a second topic of concern is whether
or not structural data in the gas phase (like CCS) reflect the
structural properties in solution. In order to analyze this point,
we performed extended MD simulations of isolated proteins
and of protein complexes in the gas phase, using simulation
conditions similar to those of electrospray mass spectrosco-
py.27 As previously found for other proteins,27,38-40 vapor-
ization preserves surprisingly well (at least in the submicro-
second time scale) the structure of proteins, at both the local

Table 1. MD Simulations for the Different Proteins and Protein Complexesa

simulationb RMSd Å std dev TmScore (Å) std dev Rg (Å) std dev Rh (Å) std dev CCS (Å2)

1UBQ P03 4.2 0.3 1.4 0.1 11.8 0.1 17.0 0.1 1 054
1UBQ C22 4.4 0.2 1.9 0.1 11.7 0.1 17.0 0.2 1 043
1UBQ ON2 4.5 0.2 1.9 0.1 11.8 0.1 17.0 0.1 1 051
1UBQ P99 T3P 1.5 0.4 1.2 0.1 11.8 0.1 17.3 0.2 1 084
1UBQ X-ray 11.6 17.1 972
1UBQ expt 1 050c

1BPI P03 2.4 0.2 1.4 0.1 11.7 0.1 16.1 0.2 919
1BPI C22 2.6 0.2 2.0 0.2 11.5 0.1 16.1 0.3 912
1BPI ON2 2.8 0.2 2.0 0.1 11.4 0.1 15.9 0.3 916
1BPI P99 T3P 1.2 0.2 1.4 0.1 11.0 0.1 15.9 0.2 977
1BPI X-ray 11.3 16.2 797
1BPI expt 900c

1LYS P03 2.8 0.1 1.9 0.1 13.7 0.1 19.3 0.1 974
1LYS C22 3.5 0.2 2.1 0.1 13.8 0.1 19.6 0.1 988
1LYS ON2 4.4 0.2 2.3 0.1 13.7 0.1 19.6 0.1 996
1LYS P99 T3P 1.0 0.2 1.1 0.1 14.2 0.1 20.2 0.1 1 088
1LYS X-ray 13.9 19.8 1 031
1LS9 P03 2.4 0.1 1.7 0.1 12.0 0.1 17.4 0.2 761
1LS9 C22 3.6 0.3 2.1 0.1 12.2 0.1 17.5 0.2 777
1LS9 ON2 2.9 0.2 2.0 0.1 12.2 0.1 17.6 0.2 778
1LS9 P99 T3P 1.3 0.3 1.5 0.2 12.4 0.1 18.1 0.2 820
1LS9 X-ray 12.0 17.7 716c

complexes RMSd (Å) std dev TmScore (Å) std dev Rg (Å) std dev Rh (Å) std dev CCS (Å2)

1ACB X-ray 19.1 27.2 1 842
1ACB T3P 1.6 0.2 1.3 0.3 19.4 0.1 26.8 0.2 1 916
1ACB vac 3.0 0.1 2.5 0.3 17.4 0.1 25.6 0.2 1 772
1CBW X-ray 18.8 27.4 1 797
1CBW T3P 1.8 0.5 1.5 0.8 19.2 0.1 27.0 0.3 1 917
1CBW vac 4.7 0.2 2.1 0.1 17.1 0.0 26.0 0.2 1 799
1CSE X-ray 19.1 27.2 1 858
1CSE T3P 1.2 0.2 0.8 0.1 19.4 0.1 26.8 0.2 1 906
1CSE vac 2.9 0.3 1.8 0.2 18.5 0.1 25.6 0.2 1 782
3TGI X-ray 17.2 25.8 1 749
3TGI T3P 1.3 0.2 1.1 0.1 18.8 0.1 26.4 0.3 1 809
3TGI vac 5.8 0.4 3.2 0.2 18.1 0.1 25.2 0.3 1 770

a The code after the PDB name indicates the force field used in the protein MD simulations (P03 ) AMBER-parm03, C22 ) CHARM22,
and ON2 ) OPLSAA). T3P and vac denotes simulations in water using the TIP3P water model and in vacuum conditions, respectively.
b Charge states used in the MD simulations were +6 for 1UBQ, +6 for 1BPI, +8 for 1LYS, and +7 for 1LS9. Where available, the
corresponding experimental CCS values for the same charge state used in the simulation are reported. c Experimental CCS values were
taken from ref 41a for 1UBQ, from ref 41b for 1BPI, and from ref 41d41d for 1LS9.
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and global levels (see Figures 5 and 6 and Supporting
Information, Figure S1). Particularly, global structural de-
scriptors are always well maintained irrespective of the force
field used for the simulations (Figure 6), suggesting that gas-
phase data derived from electrospray experiments contain
structural information that could be used to understand the
structure of proteins in solution. This is confirmed when
analyzing the CCS obtained from MD trajectories in the gas
phase, which are only slightly smaller than those derived
from trajectories in solution (in average 6%, see Figure 7).
The agreement between the MD gas phase CCS and the CCS
derived from the X-ray structure is good (6% overestimation),
in fact better than obtained between X-ray CCS and MD-
solution CCS (aqueous simulations overestimate by 12% the
CCS expected for the protein in X-ray structure), suggesting
that the crystal lattice is compressing slightly the protein with
respect to the dilute aqueous conditions and confirming that
in vacuo structural information can be used to obtain
structural insights for the protein in solution. Two additional
points are worth noting here: (i) the excellent agreement
found between the available experimental (gas phase) and
MD-computed values (Figure 7), which reinforces the
confidence in our simulations and (ii) the smaller standard

deviation in the structural descriptors associated to gas phase
simulations, which confirms the idea that in the gas phase
the structure of the protein is rigidified, reducing the impact
of flexibility (Figure 7).

Figure 1. Variation of different structural descriptors along
MD trajectories of some proteins and protein complexes. Top
to bottom: TmScore, radii of gyration, root-mean-square
derivation, and solvent accessible surface. Left: monomeric
proteins (green: 1LYS, red: 1LS9, blue: 1UBQ, and black:
1BPI). Right: protein complexes (green: 1CSE, red: 1CBW,
blue: 3TGI, and black: 1ACB).

Figure 2. Oscillation in the total number of residue-residue
contacts along the trajectories of proteins (top panel; color
code in Figure 1) and protein complexes (bottom panel; color
code in Figure 1). The histogram in the bottom corresponds
to the distribution of residue contacts (blue protein monomers
and red protein complexes) according to their persistence in
trajectory (from 10 to 100%). In all cases, a residue is
considered in contact when the CR-CR distance is lower than
7 Å in MD trajectories of proteins and protein complexes.

Figure 3. Oscillation of Rh (top plots) and CCS (bottom plots)
versus time for some protein monomers (left) and protein-
complexes (right). Color code as in Figure 1.
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In order to check whether or not results were too dependent
on the total charge assigned to the protein, we collected
additional trajectories for ubiqutin, cytochrome C and ly-
sozime using a range of charge states around the expected
optimum one (see above). Results, reported in the Supporting
Information, Figure S2, strongly suggest that within the
region of interest (i.e., close to the expected charge state),
the protein structure is quite insensitive to changes in total
charge, in good agreement with the experimental data41 (see
Supporting Information, Figure S2). For one of the proteins

(ubiquitin), for which a very large positive charge was
considered, protein unfolding was observed (see Supporting
Information, Figure S2), in agreement with results reported
by other groups.41d The fact that, in these extreme condi-
tions, the MD-simulated CCS was smaller than that of the
experimentally found41a is not unexpected, and simply
reflects that the trajectory was too short to reproduce a
complete unfolding, which, according to experimental mea-
sures, is expected to happen in the millisecond time
scale.41d,25b In any case, it seems that, unless extreme charge
conditions are considered, the gas phase CCS remains close
to those expected for solution structures.

MD simulations suggest that protein complexes are sta-
ble in the gas phase for long periods of time, and that the
sampled gas-phase structures are not far away from the
standard sampled structures in aqueous solution (see Figure
5). This is clearly shown in different metrics displayed in
Figure 8, which demonstrate that the conclusions derived
for proteins are also valid for noncovalent protein complexes
and that despite non-negligible local distortions the overall
shapes of the protein complexes are well preserved in the
gas phase, at least in the submicrosecond time scale. Not

Figure 4. Superposition of SAXS curves obtained for protein
structures sampled during MD trajectories of two proteins (left)
and two protein complexes (right). The line in red corresponds
to the curve simulated for a single average structure, while
the line in black (with standard deviations) corresponds to the
averaged spectra. Note that in the region richer in information
(s around 0.1), the black and red lines are equivalent.

Figure 5. Representation of the experimental and MD-
averaged structures of selected monomeric proteins (1BPI and
1UBQ) and protein complexes (1CSE and 3TGI). In all cases,
the experimental structure, the MD-averaged one in aqueous
solution, and the MD-averaged structure obtained after
extended simulation in the gas phase are displayed.

Figure 6. Global structural descriptors (TmScore, gyration
radii, RMSd, and SAS) for proteins in the gas phase for 1BPI
and 1UBQ obtained from MD simulations in the gas phase
with CHARM22 (green), OPLSAA (red), and AMBER-parm03
(black) force fields. The reference results for the simulation
in solution are displayed in blue, and the values derived from
the experimental structure (crystal) are shown as straight lines
in magenta.
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surprisingly then, there is a close correspondence between
the CCS obtained from MD simulations in the gas phase
and those obtained in aqueous trajectories (Figure 9). In fact,
the agreement with X-ray values is better for gas-phase
simulations (3% underestimation) than for solution trajec-
tories (5% overestimation), mimicking the results found for
isolated proteins and showing that, while proteins in pure
water expand with respect to crystal conditions, they
compress when moving to the gas phase. In summary, MD
simulations strongly suggest that gas phase experiments like
MS-ESI produce valuable data on the structure of protein
and protein complexes in solution.

Information Load in Low-Resolution Structural Data. It
is clear that the amount of information in the low-
resolution data considered here is modest, and that these
techniques alone are unable to unambiguously determine
the three-dimensional structure of proteins or protein
complexes. Thus, the Rh gives only information on the
shape of a molecule perpendicular to an external field, is
quite ambiguous in terms of structure definition, and is
prone to artifacts for proteins with tails. The CCS is a
magnitude related to the molecular surface in conditions
far from the physiological ones, and the information
derived is then unable to differentiate between different
conformations displaying similar molecular surface. Fi-
nally, the SAXS spectrum contains, in principle, all
possible structural information on the protein, but inter-
pretation of the SAXS spectrum is difficult, and ambiguous
assignments are often derived. However, despite all their
limitations, these methods are quite powerful to discard
erroneous solutions that can be obtained from modeling
techniques. This is shown when scanning the CASP7
deposited model for monomeric proteins. Thus, if we

randomly select five models (for each target) from those
deposited in the CASP7 database, we have a random
probability around 50% of choosing one of the good
solutions (we considered good solutions those with a (GDT
-5) > GDTbest solution; GDT being a score function defined
by CASP7 evaluators).42 This probability sharply increases
to 70% (CCS and Rh) and 80% (SAXS) when low-
resolution structural data are used to clean up unrealistic
models, see Figure 10. However, the largest enrichment
is obtained when low-resolution structural data, which
provide global information on the protein structure, are
combined with statistical potentials like ProSA, which
detect local errors undetectable in low-resolution data.
Thus, when combining ProSA with CCS and Rh restrains,
the chances of finding the good model among five
randomly chosen increases to 86% and to more than 98%,
if ProSA is combined with SAXS spectra (see Figure 10).
In summary, low-resolution data, especially SAXS spectra,
combined with standard statistical potentials dramatically
increases the possibilities to find good structural models
when using standard protein-modeling tools.

The same analysis performed for protein complexes, using
now the CAPRI database, provides qualitatively similar
results. Thus, we have a random probability around 30% of
finding an acceptable prediction (as defined by CAPRI
evaluators),43 when only five random models are selected.
The chances increase to 45 (Rh), 55 (CCS), and 75% (SAXS)
when low-resolution structural data are used as restrains
(Figure 11). Again the chances increase when an empirical
potential, such as pyDock, is used to detect local errors and
an experimental low-resolution data are used to detect global
structural errors. Thus, when pyDock is combined with
CCS, the chances of finding an acceptable structure in five

Figure 7. CCS (in Å2) for four small proteins, as determined from MD simulations in the gas phase considering different force-
fields. Results, obtained from MD simulations in solution, of crystal structure and, when available, experimental ESI measures
are displayed for comparisons. Standard deviations associated to the different MD averages are shown.
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randomly selected ones increase to more than 70%, the
chances increasing to 94% if PyDock is combined with
SAXS spectra. In summary, even for the very difficult case
of protein complex prediction, low-resolution structural data,
especially when combined with statistical potentials, dramati-
cally increases the chances of selecting good structural

models from the ensemble of solutions provided by standard
modeling techniques (see Figure 11).

Conclusions

Low-resolution structural data are very robust and quite insensi-
tive to oscillations due to the intrinsic flexibility of proteins.
Global descriptors of proteins, like the collision cross-section,
are quite robust to dramatic changes in the environment,
allowing then the use of structural information derived from
very hostile conditions, such as the gas phase, to gain insight
into the structure of the proteins (and protein complexes) in
aqueous solutions. Importantly, despite the reduced information
content existing in hydrodynamic radii, collision cross sections,
or SAXS curves, these magnitudes can be used to detect errors
in theoretical structural models that were accepted by scoring
procedures in leading modeling tools. The global result is an
overall improvement in the quality of the final suggested models
of proteins and of protein-protein complexes. The improvement
is especially important when the low-resolution data are
combined with empirical potentials, such as ProSA or pyDock.
Finally, the analysis of CASP7 and CAPRI experiments
demonstrates that SAXS is the richest source of structural

Figure 8. Global structural descriptors (TmScore, gyration
radii, RMSd, and SAS) for protein complexes (1CSE and
3TGI) obtained from MD simulations in the gas phase (right
panels). The reference results for the simulation in solution
are displayed on the left panels, and the values derived from
the experimental structure (crystal) are shown as straight lines.

Figure 9. CCS (in Å2) of different protein complexes as
determined from MD simulations in the gas phase, MD
simulations in solution, and crystal structures.

Figure 10. Enrichment curves for the prediction of the best
structural model of monomeric proteins obtained using data
from the CASP7 experiment.

Figure 11. Enrichment curves for the prediction of the best
structural model of protein complexes obtained by using data
from the CAPRI experiment.
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information of the three considered here, while the hydrody-
namic radius (even useful) provides a more reduced amount of
information. Overall, our results demonstrate that low-resolution
structural data, in general, is easy to obtain and can be efficiently
used to increase the chances of success in the prediction of the
three-dimensional structure of proteins and protein complexes,
even when obtained in conditions quite far from the physi-
ological ones.
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Quantum Chemistry on Graphical Processing
Units. 2. Direct Self-Consistent-Field (SCF) Imple-
mentation. [J. Chem. Theory Comput. 5, 1004–1015
(2009)]. By Ivan S. Ufimtsev and Todd J. Martinez*.

In our recent manuscript,1 we compared timings for Coulomb
matrix formation on graphical processing units (GPUs) with a
previous implementation reported by Yasuda.2 Our intention was
to compare the performance that could be obtained from porting
CPU code to the GPU as compared to completely redesigning the
algorithms for stream processors. It has come to our attention that
Yasuda’s implementation was in fact not ported from CPU code
but rather from code developed for the GRAPE-DR (a custom
accelerator that has many features in common with stream
processors). Had this been clear to us from ref 2, there would have
been no reason to compare timings of the two implementations.
A further issue is that the timings presented in Table 4 of ref 2
were misinterpreted. Although the caption states “Computational
Time in Seconds of the Coulomb Potential Evaluation During the
SCF Iteration” (emphasis added), these timings in fact refer to the
entire SCF procedure, that is, all SCF iterations. Prof. Yasuda has
kindly informed us how many iterations were required in each case.
Thus, we present a revised table that is a fair comparison and should
replace Table 2 in ref 1. The timings for the “present work”
correspond to Coulomb matrix formation in the first 13/11 iterations
for taxol/valinomycin, respectively. The difference in timings
observed reflects different compilers and CPU hardware as well
as coding strategies and algorithms. For example, accumulation
of the two-electron integrals in ref 1 was performed with single
precision accuracy (in the code version designed for the G80
architecture), while emulation of double precision accuracy was
used in ref 2. Nevertheless, one can conclude that both implemen-
tations perform similarly. This is not surprising since both reflect
redesign of the fundamental algorithms for the stream processor.
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Table 2. J-Matrix Formation Time (in Seconds) for Taxol and
Valinomycin Molecules Using 3-21G and 6-31G Basis Setsa

J-matrix formation time (seconds)

Gaussian on GPU7 present work

molecule 3-21G 6-31G 3-21G 6-31G

Taxol (13 iterations) 16.8 31.9 5.1 13.4
Valinomycin (11 iterations) 23.8 57.4 8.3 22.6

a Previously reported GPU-accelerated timings are compared to
timings from our code. Timings for the present work include construction
and sorting of pair quantities, data transfer to/from the GPU, construction
of J on the GPU, and post-processing of the intermediate J-matrix on the
CPU. All timings were obtained on one GeForce 8800GTX card. The
GPU code was compiled with Nvidia CUDA Compiler ver. 2.0.
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